
Guido Rößling,
J. Ángel Velázquez-Iturbide (eds.)

Proceedings of the Fifth
Program Visualization Workshop

Number 2008-04

Serie de Informes Técnicos DLSI1-URJC
ISSN 1988-8094
Departamento de Lenguajes y Sistemas Informáticos I
Universidad Rey Juan Carlos

ii Fifth Program Visualization Workshop

Fifth Program Visualization Workshop iii

Foreword

These are the proceedings of the Fifth Program Visualization Workshop (PVW 2008), orga-
nized by the Universidad Rey Juan Carlos, Mostoles, Spain, help on July 3-4, 2008.

The Program Visualization Workshop series has been organized in Europe every second
(even) year since 2000. Previous workshops have been organized in Porvoo, Finland (2000),
at Hornstrup Centret, Denmark (2002), at the University of Warwick, UK (2004), and at the
University of Florence (2006). The workshops have been organized in cooperation with ACM
SIGCSE and in conjunction with the ITiCSE conference, to further promote participation in
both conferences.

The aim of this workshop is to bring together researchers who design and construct visu-
alizations or animations, as well as visualization or animation systems, for computer science,
especially - but not exclusively - for programs, data structures, and algorithms. Above all,
the workshop attracts educators who create, use, or evaluate visualizations and animations in
their teaching. Due to the limited number of participants and the fact that most participants
are working actively in the field of software visualization, the workshop is a great opportunity
to exchange ideas and experiences, as well as announce novel systems.

The workshop in 2008 contained 18 papers coming from a total of 33 authors. The author
list includes both “veterans” and “newcomers”, illustrating that the field is still alive and
kicking.

This copy of the proceedings contains a copy of the papers submitted before the workshop,
and therefore includes changes recommended by the program committee during the review
phase. Each submission was reviewed by at least two program committee members.

I want to thank the program committee members for their critical and encouraging com-
ments on this year’s submissions. The program committee consisted of:

• Guido Rößling (chair) (Darmstadt University of Technology, Germany)

• Mordechai Ben-Ari (Weizmann Institute of Science, Israel)

• Pierluigi “Pilu” Crescenzi (University of Florence, Italy)

• Camil Demetrescu (University of Rome “La Sapienza”, Italy)

• Ari Korhonen (Helsinki University of Technology, Finland)

• Lauri Malmi (Helsinki University of Technology, Finland)

• Thomas L. Naps (University of Wisconsin Oshkosh, USA)

• Rockford J. Ross (Montana State University, USA)

• Jaime Urquiza-Fuentes (Universidad Rey Juan Carlos, Spain)

• Ángel Velázquez-Iturbide (Universidad Rey Juan Carlos, Spain)

This workshop has been organized by the Departamento de Lenguajes y Sistemas In-
formáticos I of the Rey Juan Carlos University and sponsored by the Vicerrectorado de Ex-
tensión Universitaria of the Rey Juan Carlos University. The local arrangements were or-
ganized by Jaime Urquiza (co-chair), Ángel Velázquez (co-chair), Francisco Almeida, Raquel
Hijón, Carlos Lázaro, Ascensión Lovillo, Antonio Pérez, Manuel Rubio, and Liliana Santacruz.
Without their support and effort, the workshop would not have been possible – thank you!

Darmstadt, Germany / Mostoles, Spain, June 2008

Guido Rößling and Ángel Velázquez-Iturbide

iv Fifth Program Visualization Workshop

Fifth Program Visualization Workshop v

Contents

Adaptive Hypermedia and Visualization
Pilar Rodŕıguez . 1
Visual Interactive Analysis: Insights into Software Comprehension
Roberto Therón . 2
Integrating Multiple Approaches for Interacting with Dynamic Data

Structure Visualizations
James H. Cross II, T. Dean Hendrix, Larry A. Barowski 3
Rationale behind the design of the EduVisor software visualization com-

ponent
Jan Moons, Carlos De Backer . 11
Visualization of Procedural Abstraction
Stefan Schaeckeler, Weijia Shang, Ruth Davis . 19
First Steps Towards a Visualization-Based Computer Science Hypertext-
book as a Moodle Module
Guido Rößling, Teena Vellaramkalayil . 29
Towards Seamless Merging of Hypertext and Algorithm Animation
Ville Karavirta . 37
Integrating test generation functionality into the Teaching Machine en-

vironment
Michael Bruce-Lockhart, Pierluigi Crescenzi, Theodore Norvell 45
Kick-Start Activation to Novice Programming — A Visualization-Based

Approach
Essi Lahtinen, Tuukka Ahoniemi . 53
Experiences on Using TRAKLA2 to Teach Spatial Data Algorithms
Jussi Nikander, Juha Helminen, Ari Korhonen . 59
Using Graphviz as a Low-cost Option to Facilitate the Understanding of

Unix Process System Calls
Miguel Riesco, Marian Diaz Fondon, Dario Alvarez 67
Dynamic Evaluation Tree for Presenting Expression Evaluations Visually
Essi Lahtinen, Tuukka Ahoniemi . 73
Work in Progress: Automatic Generation of Algorithm Animations for

Lecture Slides
Otto Seppälä, Ville Karavirta . 79
PathFinder: A Visualization eMathTeacher for Actively Learning Dijk-

stra’s algorithm
M. Gloria Sánchez-Torrubia, Carmen Torres-Blanc, Miguel A. López-Mart́ınez 85
Animation and Interactive Programming: A Practical Approach
Phillip Benachour . 91
Animalipse - An Eclipse Plugin for AnimalScript
Guido Rößling, Peter Schroeder . 97
A Java API for Creating (not only) AnimalScript
Guido Rößling, Stephan Mehlhase, Jens Pfau . 105
A Design of Automatic Visualizations for Divide-and-Conquer Algo-

rithms
J. Ángel Velázquez-Iturbide, Antonio Pérez-Carrasco, Jaime Urquiza-Fuentes 113
A First Set of Design Patterns for Algorithm Animation
Guido Rößling . 121

vi Fifth Program Visualization Workshop

Pedagogical Effectiveness of Engagement Levels - A Survey of Successful
Experiences
Jaime Urquiza-Fuentes, J. Ángel Velázquez-Iturbide 129

Fifth Program Visualization Workshop 1

Adaptive Hypermedia and Visualization

Pilar Rodŕıguez
Universidad Autónoma de Madrid

Pilar.Rodriguez@ii.uam.es

Abstract

Adapted, or customized systems, are usual in most application areas. Those systems
are able to take some variables into account and, depending of their values, behave differ-
ently. Customized systems can be very sophisticated but, once their foreseen parameters
are taken into account, their interfaces are consequently fixed, and no change takes place
at runtime. By no change we mean that there is no need of making new information
visible: from that point of view, user interactions will not affect system behavior once the
application is running.

Beside adapted systems, adaptive systems are becoming quite useful in some areas.
Adaptive systems differ from customized ones in several senses. Mainly, they aim to adapt
themselves to user interactions at runtime. When talking about hypermedia systems,
adaptation means not only adapting contents and/or navigation issues on the fly, but
also adapting interfaces to the changing parameters. And always keeping in mind not to
disturb users while interacting with the system

Consequently, visualization issues play a key role from adaptive system perspective.
It is clear that, in adaptive systems, data visualization can be much more complex and
subtle than in many other applications. In this work, main visualization issues for adaptive
systems are addressed, making use of existing applications for illustrating the depicted
facts.

2 Fifth Program Visualization Workshop

Visual Interactive Analysis: Insights into Software
Comprehension

Roberto Therón
Universidad de Salamanca

theron@usal.es

Abstract

Program visualization has traditionally been seen as a discipline for producing ani-
mated views of program executions. Beyond that, software comprehension is a matter of
making sense of a particular kind of data that is complex, dynamic, often not evident,
and evolving.

The goal of visual analytics is to facilitate the analytical reasoning process through
the creation of software that maximizes human capacity to perceive, understand, and
reason about complex and dynamic data and situations. Very impressive results have been
achieved in program visualization. The main effort has been done with regard to finding
suitable visual representations and retrieving the needed data, however, lesser attention
has been paid to the use of interaction theory. Here is where visual analytics can be very
helpful. The application of visual representations and interactions must necessarily be
adapted to fit the needs of the task at hand, i.e., the comprehension of software in terms
of debugging, evaluating and improving program performance, evaluating and reducing
resource utilization, evaluation of algorithms in the context of complete programs and real
data, understanding program behavior and teaching.

In this talk, I will explain how interactive visualization can be used in order to facilitate
analytical insight and provide ways for better explore, analyze, and understand problems
at the different stages of the software lifecycle. I will show several examples of successful
experiences in other fields of approaching a problem from the visual analytics perspective
that can be very inspiring for the program visualization community.

Fifth Program Visualization Workshop 3

Integrating Multiple Approaches for Interacting with
Dynamic Data Structure Visualizations

James H. Cross II, T. Dean Hendrix, and Larry A. Barowski
Department of Computer Science and Software Engineering

Auburn University
Auburn, Alabama 36849-5437 USA

{crossjh, hendrtd, barowla}@auburn.edu

Abstract

jGRASP 1.8.7 has integrated three approaches for interacting with its dynamic view-
ers for data structures: the debugger, the workbench, and a new text-based interactions
tab that allows individual Java statements to be executed and expressions to be evalu-
ated. While each of these approaches is distinct and can be used independently of the
others, they can also be used together to provide a complementary set of interactions with
the dynamic viewers. In order to integrate these approaches, the jGRASP visual debug-
ger, workbench, and viewers had to be significantly redesigned. During this process, the
structure identifier, which provides for the identification and rendering of common data
structures, was also greatly improved by examining the examples from 20 data structure
textbooks. The overall result of this integration effort is a highly flexible approach for user
interaction with the dynamic data structure visualizations generated by a robust structure
identifier.

1 Introduction

Visualizations of data structures have been used in limited ways for many years. To overcome
a major obstacle to widespread use, namely lack of easy access and use, the jGRASP1 IDE
provides a structure identifier that attempts to identify and render traditional abstract visu-
alizations for common data structures such as stacks, queues, linked lists, binary trees, heaps,
and hash tables (Cross et al., 2007). These are dynamic visualizations in that they are gen-
erated while running the users program in debug mode. This technique helps bridge the gap
between implementation and the conceptual view of data structures, since the visualizations
can be based on the users own code.

jGRASP 1.8.72 provides numerous ways for the user to interact with the data structure
visualizations: (1) the debugger, (2) the workbench, and (3) a new text-based interactions
tab. Each of these is briefly described below and then more fully with examples in the sections
that follow.

The most common way to open a viewer on a data structure object is via the debugger.
The user simply sets a breakpoint on a statement near the creation of the data structure,
and runs the program in debug mode. After the program stops at the breakpoint, the user
single steps as necessary until the object is created, and then opens a viewer on the object by
dragging it from the debug tab. As the viewer is opened, the structure identifier determines
the particular type of data structure and then renders it appropriately. When the user steps
through the executing program, the viewer is updated to show the effects.

In addition to interacting with the data structure visualizations via the debugger, jGRASP
allows the user to interact with viewers via the workbench. Objects can be created and their
methods invoked via menus and buttons on the UML class diagram and/or the source code
edit windows. When the user invokes a method on the object (e.g., to insert a node into the
data structure), the visualization is updated to show the effect of the method.

The third approach for interacting with the viewers is a text-based interactions tab, which
is essentially a Java interpreter. That is, when the user enters a Java source statement and

1The jGRASP research project is funded, in part, by a grant from the National Science Foundation.
2jGRASP 1.8.7 is currently in pre-release and scheduled for full release in late summer 2008.

4 Fifth Program Visualization Workshop

presses the ENTER key, the statement is immediately executed. If an expression is entered,
it is evaluated and its value is displayed. This means that while at a breakpoint, the user can
interact with any of the variables in the debug tab or any variables on the workbench. In
addition, if the user creates an instance of a class via the interactions tab (e.g., LinkedList list
= new LinkedList();), list is shown on the workbench. A viewer can be opened in the usual
way by dragging the reference from the debug tab or workbench. Once opened, the viewer is
updated as appropriate when statements or expressions are entered in the interactions tab.
In the following sections, we discuss related work, and then we provide an extended linked list
example to illustrate the integration of the debugger, workbench, and text-based interactions
with the viewers for data structures. This is followed by examples of other common data
structures generated by jGRASP. A brief summary of the integration effort is presented,
including future integration tasks, and then we close with concluding remarks.

2 Related Work

Both the method and degree of user interaction with software visualizations have been shown
to be primary contributors to effectiveness. Research indicates that passive modes of interac-
tion with visualizations, e.g., only watching an animation of an algorithms behavior, are not
as effective as more active engagement strategies, e.g., having the user manipulate elements of
the visualization or respond to prompts (Stasko and Lawrence, 1998; Lauer, 2006). The con-
text in which the visualization appears has also been shown to play a vital role in effectiveness
(Hansen et al., 2002). These issues are now widely seen as fundamental to the advancement
of software visualization research in education (Naps, 2000; Naps and Roessling, 2005).

We hold the pragmatic view that much of the learning and indeed much of the opportunity
for learning occurs while a student is actively working on a source code implementation of
an algorithm or data structure. Thus, we provide software visualizations that are directly
coupled to real source code in the context of a full-featured IDE. This is similar to “scenario
three” of user interaction described by Naps and Roessling (2005).

The three basic software visualization interaction techniques that jGRASP offers are based
directly on common tools and idioms available in various IDEs: the debugger, object work-
bench, and interactions pane. The debugging process and the use of a debugger are central to
almost all courses in which programming is involved and is supported by almost all IDEs. In
addition, the use of a debugger as a pedagogical tool and as an important application area for
software visualization has long been recognized (Baecker et al., 1997; Cross et al., 2002). The
object workbench paradigm has been made popular by BlueJ (www.bluej.org), a popular IDE
for early programming courses. In BlueJ, students use menus and dialogs to create object
instances for the workbench and to invoke methods on those instances, without the need for a
running program. In jGRASP, this notion of workbench has been extended to allow the user
to open type-specific viewers on objects or primitives, as well as a viewer that identifies data
structures on the fly. DrJava (www.drjava.org) has demonstrated the utility of an interactions
tab for experimenting with Java source statements and expressions without the necessity of
compiling and running a complete program. This is especially useful in a classroom setting.
In jGRASP, we have extended the basic notion of the interactions tab in several ways. Most
importantly, it is fully integrated with the debugger, workbench, and viewers.

The approach we have taken for data structure viewers in jGRASP is to automatically
generate the visualization from the users executing source code and then to dynamically
update it as the user steps through the source code in either debug mode or workbench mode,
or as statements are executed in the interactions tab. This general approach is somewhat
similar to the method used in Jeliot (Kannusmaki et al., 2004). However, jGRASP differs
significantly from Jeliot in its target audience. Whereas Jeliot focuses on beginning concepts
such as expression evaluation and assignment of variables, jGRASP includes visualizations
for more complex structures such as linked lists and trees. In this respect, jGRASP is similar

Fifth Program Visualization Workshop 5

to DDD (Zeller, 2001). The data structure visualization in DDD shows each object with
its fields and shows field pointers and reference edges. In jGRASP, each category of data
structure (e.g., linked list vs. binary tree) has its own set of views and subviews which are
intended to be similar to those found in textbooks. Although we are planning to add a general
linked structure view, we began with the more intuitive “textbook” views to provide the best
opportunity for improving the comprehensibility of data structures.

We have specifically avoided basing the visualizations in jGRASP on a scripting language,
which is a common approach for algorithm visualization systems such as JHAVE (Naps, 2005).
We also decided against modifying the users source code as is required by systems such as
LJV (Hamer, 2004). Our philosophy is that for visualizations to have the most impact on
program understanding they must be generated as needed from the users actual program
during routine development and the user should be allowed to interact with the visualizations
through commonly-used features of the IDE.

3 An Example – Integrated User Interaction

To see a meaningful visualization of a data structure in a viewer requires that an instance
be created and its methods be invoked. The integrated approach in jGRASP allows this to
be done by (1) using the debugger in the traditional way, (2) using the workbench menus
and dialogs from the UML window or the edit window, and (3) entering source code into the
interactions tab for direct execution. In each of these approaches, the viewer is opened on an
instance by dragging it from the debug or workbench tab. Below, we will begin by using the
debugger approach and then we will show how the user can interact with the visualization
using both workbench and text-based approaches.

3.1 Using the Debugger

Consider the program LinkedListExample.java, which is provided with the jGRASP distribu-
tion. The UML class diagram in Figure 1(a) shows the dependencies among LinkedListEx-
ample, LinkedList, and LinkedNode. The LinkedList class is intended to be representative
of a “textbook” example or of what a student or instructor may write. Figure 1(b) shows
LinkedListExample.java stopped at a breakpoint where the list.add method is about to be
invoked. Prior to stopping at the breakpoint, list was assigned to an instance of LinkedList,
and thus it appears in the Variables tab of the Debug window. To open a viewer on list,
the user simply drags it from the Debug window. During the process of opening the viewer,
the Data Structure Identifier mechanism in jGRASP determines, in this case, that the object
is a linked list structure and opens the appropriate viewer. As the user steps through the
program, the nodes appear in the viewer. Figure 1(c) shows the visualization of list after
three elements have been added.

The debugger approach is perhaps the most natural way for students to interact with
the viewers. Since it involves stepping through a program, the visualization reinforces or
clarifies the effect of each step by providing live feedback at a conceptual level. For example,
Figure 2(a) shows the program after stepping into the insert method. The statement about
to be executed will complete the linking of node into the data structure. Figure 2(b) shows
the synchronized view of list at this point in the program. The visualization clearly indicates
that prev.next is pointing to the last node in the structure (labeled “〈3〉”). As soon as the
statement “prev.next = node;” is executed, the new node with value “x3” will move up into
the structure in an animated fashion. The visualization in the viewer allows the student to
make the connection between the implementation of the insert method and the concept of
inserting an element in a linked list.

6 Fifth Program Visualization Workshop

Figure 1: (a) UML diagram for LinkedListExample (b) Method main at breakpoint (c) View
of list after three elements added

3.2 Using the Workbench

In the workbench approach for interacting with data structure visualizations, the user creates
one or more instances of the class using menus or buttons on the UML class diagram or source
code editing windows. From the UML diagram, this can be done by selecting Create New
Instance on the right-click menu for the class, which pops up a Create instance dialog for
class LinkedList as shown in Figure 3 below. When the instance is created, it appears on
Workbench tab, similar to the way list appeared in the Debug tab in Figure 1 above. As
before, a viewer is opened on the instance by dragging it from the workbench. The Invoke
Method dialog for the instance is popped up by either right-clicking on the instance and
selecting Invoke Method or by clicking the Invoke Method button on the viewer (upper right
corner). Figure 3 shows the Invoke Method dialog for jgraspvex-LikedList-1 with the add
method selected. When a method is invoked, the viewer on the instance is updated to show
the new state. Thus, the user can interact with the data structure visualizations in the viewer
by invoking a sequence to add, insert, and/or remove methods. The operations just described
could have been performed alone or in the context of a running program. In the latter case,
the operations could also have been performed on an instance of LinkedList created by the
program itself.

3.3 Using Text-Based Interactions

The new Interactions tab in jGRASP 1.8.7 provides a Java interpreter that allows the user
to enter expressions and statements and have them immediately evaluated/executed. To use

Fifth Program Visualization Workshop 7

Figure 2: (a) Stepping in list insert method (b) View of list showing details of insert

Figure 3: (a) Creating instance from UML diagram (b) Invoke method dialog

this feature in a stand-alone fashion with respect to data structure visualizations, the user
could enter the code to create an instance and then enter statements that invoke methods on
the instance. The advantage of this approach is that it allows the user to enter actual Java
statements and execute them without having to enter and run an entire program, though
the interactions tab can also be used to interact with elements in a running program. The
integration with the workbench means that when a variable is declared and initialized (e.g.,
LinkedList myList = new LinkedList();), it appears on the workbench. This allows the user to
open a viewer on the variable myList. Once the viewer is opened, any effects of the statements
entered in the Interactions tab involving the methods invoked on myList will be seen in the
viewer. To illustrate the degree of integration of the text-based interactions, consider our
original example that we were running in debug mode. Figure 4(a) shows LinkedListExample
stopped at the second for loop. Three list.insert method calls are shown in the Interactions
tab. As these statements were entered, “ZZ”, “YY”, and “XX” respectively were inserted at
location 3. As each node was entered, the existing nodes were moved to the right with the
final result shown in Figure 4(b).

8 Fifth Program Visualization Workshop

Figure 4: (a) Interactions (b) Viewer for list after interactions

4 Examples of Other Data Structures

The jGRASP data structure identifier mechanism, which provides for the identification and
rendering of common data structures, has been greatly improved by examining the examples
from 20 data structure textbooks. The detailed results of the testing are described in (Mont-
gomery et al., 2008). Example visualizations now recognized by the mechanism are shown in
Figure 5. These were generated from the example source code provided with jGRASP and
include a queue, doubly linked list, binary tree, binary heap, red-black tree, and hash table.

5 Summary of Integration

The debugger, workbench, and interactions in jGRASP are flexible and well-integrated. The
workbench and interactions may be used alone, together, or in conjunction with a program
that is being debugged. Any object visible from the debugger, workbench, or in a viewer,
including any sub-component object, can be placed on the workbench. Any object or primitive
value visible from the debugger, workbench, or in a viewer, including any sub-component, can
be displayed separately in a viewer. Objects created in interactions appear on the workbench.
Non-void return values from workbench-initiated method invocations are displayed in viewers.
Items on the workbench and in viewers are named, and those names may be referenced
by source code in interactions, or in expressions passed as parameters to workbench object
creation and method invocation dialogs. Java expressions (not just objects) can be displayed
in a viewer by dragging them from the “Eval” tab in the debugger or by using an interface
that directly launches a viewer for an expression.

More integration is planned for the future. We intend to make it possible to echo work-
bench object creation and method invocation actions to the interactions tab as source code
text. Also, special syntax will be recognized by interactions so that viewers for values and
expressions can be launched directly from the interactions tab without leaving the text-based
interface.

6 Conclusion

The data structure visualizations provided by jGRASP are intended to support teaching and
learning activities in courses that include data structures. In U.S. computer science programs,
this would typically be CS2 or CS3. The highly visual debugger in jGRASP, which provides
a natural interface for the data structure visualizations, has also been a major strength for
CS1 students as they learn the basics of object-oriented programming. Those students who

Fifth Program Visualization Workshop 9

Figure 5: Example visualizations automatically generated by jGRASP

use BlueJ in their CS1 course are likely to be comfortable with the workbench approach
for developing their programs, and those who use DrJava are familiar with the text-based
interactions approach. By integrating these three approaches, students in CS2 and CS3 are
allowed to interact with their data structure visualizations in the manner with which they are
most comfortable. Furthermore, the integration allows the students to mix and match the
operational aspects of each approach in a seamless manner.

The process of integrating the approaches required that the jGRASP visual debugger,
workbench, and viewers be significantly redesigned. The redesign of the viewers included
significant improvements to the data structure identifier mechanism which generates the vi-
sualizations. Example programs from 20 data structure textbooks were used to tune the data

10 Fifth Program Visualization Workshop

structure identifier mechanism. The overall effect of the redesign should be a highly flexi-
ble approach for user interaction with a rich set of automatically generated dynamic data
structure visualizations.

References

R. Baecker, C. DiGiano, and A. Marcus. Software visualization for debugging. Communica-
tions of the ACM, 40(4):44–54, 1997.

J. H. Cross, T. D. Hendrix, and L. A. Barowski. Using the debugger as an integral part of
teaching cs 1. In Proceedings of Frontiers in Education 2002, November 2002.

J. H. Cross, T. D.Hendrix, J. Jain, and L. A. Barowski. Dynamic object viewers for data
structures. In Proceedings of the SIGCSE 2007 Technical Symposium, pages 4–8, March
2007.

J. Hamer. A lightweight visualizer for java. In Proceedings of Third Progam Visualization
Workshop, pages 55–61, July 2004.

S. R. Hansen, N. H. Narayanan, and M. Hegarty. Designing educationally effective algorithm
visualizations: Embedding analogies and animations in hypermedia. Journal of Visual
Languages and Computing, 13(2):291–317, 2002.

O. Kannusmaki, A. Moreno, N. Myller, and E. Sutinen. What a novice wants: students using
program visualization in distance programming course. In Proceedings of Third Progam
Visualization Workshop, pages 126–133, July 2004.

T. Lauer. Learner interaction with algorithm visualizations: Viewing vs. changing vs. con-
structing. In Proceedings of the 11th annual SIGCSE conference on Innovation and tech-
nology in computer science education (ITiCSE 2006), pages 202–206, June 2006.

L. N. Montgomery, J. H. Cross, T. D. Hendrix, and L. A. Barowski. Testing the jgrasp
structure identifier with data structure examples from textbooks. In Proceedings of the
46th ACM Southeast Conference, pages 198–203, March 2008.

T. Naps. Instructional interaction with algorithm visualizations. Journal of Computing Sci-
ences in Colleges, 16(1):7–8, 2000.

T. Naps. Jhave: supporting algorithm visualization. IEEE Computer Graphics and Applica-
tions, Sep/Oct:49–55, 2005.

T. Naps and G. Roessling. Development of xml-based tools to support user interaction with
algorithm visualization. ACM SIGCSE Bulletin, 37(4):123–138, 2005.

J. Stasko and A. Lawrence. Empirically assessing algorithm animations as learning aids. In
Software Visualization: Programming as a Multimedia Experience, pages 419–438, 1998.

A. Zeller. Visual debugging with ddd. Dr. Dobb’s Journal, July, 2001.

Fifth Program Visualization Workshop 11

Rationale behind the design of the EduVisor software
visualization component

Jan Moons, Carlos De Backer
Universiteit Antwerpen

Faculty of Applied Economics
Department of Management Information Systems

Prinsstraat 13, 2000 Antwerpen

jan.moons@ua.ac.be, carlos.debacker@ua.ac.be

Abstract

The EduVisor software visualization component is a new pedagogical tool specifically
developed to address some wide-spread problems in teaching object-oriented technology
to novice programmers. The visualization tool is integrated in a world-class IDE, and
shows the students the structure of their own creations at runtime. EduVisor is based on
a solid grounding in literature and over 25 years of combined experience in teaching a CS1
course. With this component we have set the goal of helping our students progress faster
through the most difficult initial stages of programming.

1 Introduction

Over the past decades software design has often been described as a wicked or difficult prob-
lem (Jeffries et al., 1981; Kim and Lerch, 1997; Kölling, 1999; Budgen, 2003). Dalbey and
Linn (1986) note that the average student does not make much progress in an introductory
programming course. More recently, there are many reports corroborating this position. For
instance, in the infamous McCracken Report (McCracken et al., 2001) the authors noted that
the average score on a programming test was only 22.89 out of 110 points for a sample of 216
students. As difficult as it is for students to acquire programming and software design skills,
just as difficult is it for teachers to teach those skills.

This paper is concerned with a novel visualization tool that can be used as a teaching
aid in CS1 courses. The tool is called EDUcational VISual Object Runtime or EduVisor,
and seeks to incorporate a lot of the acquired knowledge from previous visualization projects.
The goal of EduVisor is threefold. First, we want to improve students’ comprehension of the
concepts introduced during the CS1 course. Second, we want them to be able to debug their
programs faster. Third, we want to increase the enthusiasm of students by visualizing (and
thus reducing the abstraction level) their own efforts at the push of a button. The design of
the tool is based on several decades of combined CS1 teaching experience and on a thorough
grounding in relevant literature.

In section 2 we describe the driving forces behind the design of EduVisor. Section 3
describes the most important runtime issues one encounters during a CS1 course, which will
be used as input to the design of EduVisor. Section 4 shows a small sample of the graphical
representation used in the EduVisor component based on a simple use case. Section 5 provides
an overview of the resulting properties of the component. Section 6 discusses the similarities
and differences between EduVisor and related work. Finally, in section 7 we present our
conclusions and provide an outlook on the future development of the EduVisor component.

2 Rationale of the EduVisor software visualization component

As so many educational institutions, the University of Antwerp has migrated from Pascal to
C, later to C++ and finally to Java over the past two decades as the language of choice in
our CS1 course. The switch to Java was made seven years ago. During our course we have
noticed the same basic errors appear again and again, causing students to loose valuable time
and generating frustration and disappointment.

12 Fifth Program Visualization Workshop

On the highest level, these errors can be divided in compile-time errors and runtime errors.
The code editor can help with some of the compile-time errors (although the compiler messages
are very cryptic to novice programmers), but does nothing to aid in understanding runtime
behavior. Thus, over the past five years, we have designed a visual language to illustrate the
runtime behavior of a program. The language is, as we tend to say, as simple as possible and
as complicated as necessary. We use this visual language when explaining programs at the
whiteboard, and students’ comprehension of these specific programs has improved markedly.
However, when it is time to start programming their own exercises, the same errors tend
happen all over again.

This is caused by several issues. First, the nature of their programming efforts is very much
trial and error - which is actually a well known fact (Ben-Ari, 1998). Second, the students do
not go through the effort of drawing out their solutions in the way we do at the whiteboard.
This is not that surprising - creating the visual representations for a running program takes
quite some time. Encouraging however is that, when we force them to draw their programs
on a sheet of paper, most of the time they are able to pinpoint the problems themselves.

Therefore we concluded that an automated software component based on our language
could help students in recognizing and correcting their problems sooner. We did an extensive
review of visualization components that address some of these issues, but none were found
to be completely satisfactory. Section 6 talks in more detail about these closest alternatives.
EduVisor was thus conceived and designed to our specifications. With this new component
we have set three interrelated goals:

1. Improve students’ comprehension of basic programming constructs: The ab-
stract nature of programming languages makes understanding the concepts very hard
for beginners. We, along with many other researchers (e.g. Hundhausen et al. (2002);
Milne and Rowe (2002); Naps et al. (2002)), believe this difficulty can be reduced to
some extent by using engaging visualization techniques.

2. Speed up the debugging process of runtime problems: debugging runtime errors
is difficult even for experienced programmers. The standard debuggers that come with
the major IDE’s are very powerful, but also very difficult to operate - too difficult for
novice programmers.

3. Increase their enthusiasm about object-oriented programming: The visual
representation will provide an important incentive to students. As stated by Ross (1991),
it is a tacitly known fact that programmers like to see their creations in action. All
artisans are intrigued by what they create, and they like to observe their work from all
angles [. . .].

3 CS1 runtime issues

After describing our reasons for developing EduVisor we take a look at the specific problems
we would like to address. Table 1 presents a listing which is loosely based on the list of Garner
et al. (2005), but restructured and rephrased to fit our purpose in two ways. First, the list is
rephrased to present the causes rather than the symptoms of programming difficulties. Second,
we only include runtime problems in the list, because this is the focus of our visualization
tool. The next section details a use-case based on one of these problems and specifies how
EduVisor will address it using visualization.

4 A simple EduVisor GUI use-case

This example details a problem we have witnessed recently with one of our students during
our first lesson on objects. The goal was to write a program consisting of two classes, a Bank
class and an Account class. The following code presents the main method located in the Bank

Fifth Program Visualization Workshop 13

Error description

A. Failing to un-
derstand program
design

1. Failing to identify the correct classes.

2. Failing to identify the correct methods.

3. Failing to construct the correct algorithms.

4. Failing provide the necessary variables.

B. Failing to un-
derstand the na-
ture of objects

1. Failing to understand that objects are persistent structures
in memory holding their own state.

2. Failing to understand that a method can instantiate mul-
tiple objects of the same kind.

3. Failing to understand the difference between static and
non-static structures.

4. Failing to understand that objects can only be queried for
their state through a reference.

5. Failing to understand the nature of references (e.g. return-
ing a reference when the calling method already holds that
reference).

C. Failing to un-
derstand message
passing

1. Failing to understand that methods have to be actively
called.

2. Failing to understand the parameter passing mechanism.

3. Failing to understand that return variables have to be
caught.

D. Failing to
understand vari-
ables

1. Failing to understand variable scoping.

2. Failing to keep track of the values of variables in a running
program.

3. Failing to understand the necessity and operation of a con-
trol variable inside a loop.

Table 1: A list of common causes of runtime errors encountered during a CS1 course, loosely
based on Garner et al. (2005)

class, containing the problem. The code in italics was not present in the student’s solution -
i.e. the getValue method did not get called after calling the withdraw method.

public stat ic void main (St r ing [] a rgs){
int value ;
Account account1 = new Account (1 0 0) ;
Account account2 = new Account (2 0 0) ;
va lue = account1 . getValue () ;
System . out . p r i n t l n (‘ ‘ va lue o f account1 i s ’ ’+ v a l u e) ;
account1 . withdraw (5 0) ;
// v a l u e = account1 . getValue () ;

14 Fifth Program Visualization Workshop

System . out . p r i n t l n (‘ ‘ va lue o f account1 i s ’ ’+ v a l u e) ;
}

The student thought he was using the variable of the Account instance because he was
referring to the object just before. This is a typical B4 problem - Failing to understand that
objects can only be queried for their state through a reference. EduVisor will help the student
trace this error through dynamic visualization of the program runtime. Figure 1 shows a
snapshot of the proposed visualization style. The following list details some of the visual
features of EduVisor.

Bank Account at 10b62c9

Main

value

account1 10b62c9

codeview

100

deposit

codeview

withdraw

codeview

getValue

codeview

value 50

2 3

5

6

7

6

int value;
Account account1 = new Account(100);
Account account2 = new Account(200);
value = account1.getValue();
System.out.println(”value of account1 is ”+value“);
account1.withdraw(50);
System.out.println(”value of account1 is ”+value“);

Account

codeview

1

Account at 23c50as

deposit

codeview

withdraw

codeview

getValue

codeview

value 50

3

6

Account

codeviewaccount2 23c50as

4

8

Figure 1: EduVisor visualization snapshot of this use-case

1. All information is presented on one single canvas.

2. Every class holding static information is represented as a rectangle with the name of
the class positioned above the rectangle.

3. Every object is represented as a rounded rectangle with the name of the originating
class and the hash-code of the object positioned above the rounded rectangle.

4. Every method (and every scoped block within a method) has its own area to hold the
local variables. The variables are dispensed when the method execution is complete.

5. Every variable is represented as a named rectangle that can hold a value, either of
primitive or of reference type.

6. At object instantiation, a new object gets drawn on the canvas including member vari-
ables and method areas. The object lives as long as there are references pointing to the
object. At instantiation, the memory address is transported to the variable holding the
address.

7. Every method has a code area which can be uncollapsed. The code area shows the
method implementation.

8. Every variable and method with reduced visibility relative to an active method (local
variables as well as private member variables) is adorned with a lock symbol. The
symbols are dynamically updated synchronously with the current active method.

Fifth Program Visualization Workshop 15

5 EduVisor solutions to CS1 problems

Because we can not elaborate on the architectural details of our solution in this restricted
space, we will not detail the libraries and code representations used by EduVisor. Rather, in
this paper we want to describe the ways in which EduVisor will help in solving the categories
of CS1 problems we have defined in section 2. The following list contains references to the
number of the problem (cf. table 1) that an EduVisor feature addresses. It should be noted
that the effectiveness of the software component has not yet been tested with students. The
primary reason for this section is to detail how we expect EduVisor to help, and any claims
presented in this section have yet to be confirmed.

1. Failing to understand program design: the single canvas approach allows the novice
programmer to see the entire structure of the program at any time during the execu-
tion. All static and dynamic structures as well as all available variables can be seen
without having to switch representations. Panning and zooming capabilities help with
understanding more complex structures. This unified visual presentation will help the
students to see e.g. which classes (A1), methods (A2) and variables (A4) are part of
their program and help them understand the deficiencies in their design. The step-wise
nature of the visualization will help them understand their algorithms (A3) better.

2. Failing to understand the nature of objects: every single object is explicitly rep-
resented on the canvas using rounded rectangles (B2). Every object contains only non-
static member variables, explaining to the students the difference in runtime behavior
between static and non-static structures (B3). The values of these variables are always
visible, which will help the student in understanding the persistent and autonomous
nature of an object (B1). Reference variables are represented in a different color than
regular variables, and the value of the reference variable is the hash-code of the object.
By clicking on the reference variable the corresponding object is highlighted, which will
help in understanding the nature of references (B4 and B5).

3. Failing to understand message passing: Active objects are highlighted on the dia-
gram. This way students see that an object is only active when a method of that object
is called (C1). In addition, the values of the variables that are passed as parameters
to a method are animated from the calling method to the called method, which helps
in understanding the variable passing mechanism (C2). Return variables are also ani-
mated. Those return values that are not stored in a variable disappear, explaining the
need to store return values (C3).

4. Failing to understand variables: All variables are always visible on the canvas and
presented in their own scope (class, method or block) and adorned with modifier symbols
that are dynamically adjusted to reflect the variables visible to an active method. This
helps in understanding scoping (D1). In addition to the variables themselves the values
of these variables are also visible, helping students keep track of program state (D2) and
helping with understanding control variables in loop and selection structures (D3).

6 EduVisor contrasted with related work

Over the past three decades many studies have focused on improving and refining teaching
methods for CS1 courses, which has resulted in an extensive pedagogical toolbox that can
be used by computer science teachers. Some of the tools teachers have at their disposal
are specialized IDE’s such as JGrasp (Hendrix et al., 2004), BlueJ (Kölling, 1999; Kölling
et al., 2003) and ProfessorJ (Gray and Flatt, 2003), programming micro-worlds such as Alice
(Cooper et al., 2003) and ObjectKarel (Xinogalos et al., 2006) and advanced visualization
environments such as JEliot3 (Moreno et al., 2004) and JIVE (Gestwicki and Jayaraman,
2005). For reasons of conciseness, in this paper we limit ourselves to only the last category.

16 Fifth Program Visualization Workshop

The tools we discuss in detail are JEliot31 and JIVE2. Both have great merit and had
considerable influence on the design of EduVisor. JEliot3 is a tool based on over ten years
of development, starting with JEliot, later JEliot2000 and finally JEliot3. JIVE has a long
history itself, starting as a stand-alone tool and recently reborn as an Eclipse plug-in. We
also discuss the program state visualization tool by Seppälä (2004), which states similar goals
as EduVisor.

JEliot uses several simultaneous representations to present the visualization. The canvas
is divided in a memory stack, a constants area and an object heap. In addition, JEliot
presents the data as it is processed by the virtual machine, i.e. using a method stack. Our
emphasis is on understanding the program architecture, i.e. type A problems, not the VM. In
addition, due to their particular implementation it is not possible to view all values on the
method stack with one look at the canvas. This makes it difficult to keep track of the values
of variables in a running program (D2). In addition, JEliot’s canvas is based directly on the
Java AWT classes and proprietary development. This implies certain restrictions, such as
the complete absence of select, zoom and pan tools. These features are very important, as
described by (Shneiderman, 1996). His visual mantra of overview first, zoom and filter, and
then detail on demand is often mentioned as one of the cornerstones of good visualization
tools. EduVisor is much more ambitious in this regard, thanks to it’s use of an advanced open
source visualization library, the Netbeans Visual Library3.

JIVE has multiple representations of the same runtime behavior. We are presented with
an object diagram and with a sequence diagram. However, it is not possible to see the values
of variables contained in objects and methods nor the values of the parameters passed to
methods and the return values of methods. EduVisor, on the other hand, uses the single
canvas approach and shows dynamic behavior directly on this single canvas. This includes all
values of reference and primitive variables in the program at any time. JIVE uses the Eclipse
Graphical Editing Framework4 to provide the representation. Jive should thus have zoom
and pan features. However, in the most recent version zooming features are available through
menu buttons and no easy panning or selection features exist.

The program state visualization tool mentions some of the same goals as Eduvisor. In
Seppälä (2004), the authors state that [their] notation attempts to show most of the run-
time state of the program in a single diagram. Essentially, this means displaying all relevant
instances, all references to them and some of the contents of the runtime stack together. How-
ever, in their paper the presentation of program state seems to be quite different from the
EduVisor presentation. The diagrams do not show the values of the variables, which is crucial
in our system. For instance, the diagrams show references between objects as arrows between
these objects, but there is no mention of the reference variables holding the objects. In ad-
dition, the diagrams do not show objects as environments of execution, i.e. the methods are
not represented in the objects. We have found no further mention of this tool in literature.

One of our demands for a visualization tool was easy integration in a widely used IDE.
We chose Sun’s Netbeans as our platform, an thus EduVisor runs on the same platforms as
Netbeans. Jeliot does not provide integration with a widely used IDE. Jive, on the other
hand, is integrated with Eclipse - another widely used java IDE. It is not clear whether the
program state visualization tool by Seppälä provides IDE integration, but according to the
screenshots, it does not.

7 Outlook and conclusion

With EduVisor we have devised a visualization component that can be integrated easily in
a world-class IDE such as Netbeans. The code is currently in alpha status but is being

1JEliot3 is available online at http://cs.joensuu.fi/~jeliot/
2JIVE is available online at http://www.cse.buffalo.edu/jive/
3The Netbeans Visual Library is available online at http://graph.netbeans.org/
4GEF is available online at http://www.eclipse.org/gef/

Fifth Program Visualization Workshop 17

further developed as part of the PhD project of the first author. The final intent is to
include additional ITS (Intelligent Tutoring System - see Wei et al. (2005)) functions such
as pop quizzes and course material through XML based code-injection into the intermediate
visualization code. Once the code reaches beta in the course of this year, it will be released
on a public server. Our first goal now is to further develop this code base, starting with the
visualization features and working our way up to the code infusion. Next we will perform
experiments to research important features such as the one-canvas philosophy, the animation
features and the utility of the additional pedagogical features afforded by the ITS functions.

The main goal of this paper was to present the design philosophy of our EduVisor visu-
alization component. Based on literature and experience we have created a list of common
causes of CS1 runtime problems. This list is currently being validated during course sessions
and the intermediate results indicate that the list indeed represents the most common issues.
The list also serves as input to the design of EduVisor. Finally, we have presented the solu-
tions EduVisor offers to these common problems and contrasted our work with that of similar
environments.

References

Mordechai Ben-Ari. Constructivism in computer science education. SIGCSE Bulletin, 30(1):
257–261, 1998. ISSN 0097-8418. doi: http://doi.acm.org/10.1145/274790.274308.

David Budgen. Software Design. Addison Wesley, second edition, May 2003. rapid.

Stephen Cooper, Wanda Dann, and Randy Pausch. Teaching objects-first in introductory
computer science. In SIGCSE ’03: Proceedings of the 34th SIGCSE technical symposium
on Computer science education, pages 191–195, New York, NY, USA, 2003. ACM. ISBN
158113648X. doi: 10.1145/611892.611966. URL http://portal.acm.org/citation.cfm?
id=611966.

John Dalbey and Marcia C. Linn. Cognitive consequences of programming: Augmentations
to basic instruction. Journal of Educational Computing Research, 2:75–93, 1986.

Sandy Garner, Patricia Haden, and Anthony Robins. My program is correct but it doesn’t
run: a preliminary investigation of novice programmers’ problems. In ACE ’05: Proceedings
of the 7th Australasian conference on Computing education, pages 173–180, Darlinghurst,
Australia, Australia, 2005. Australian Computer Society, Inc. ISBN 1-920682-24-4.

Paul Gestwicki and Bharat Jayaraman. Methodology and architecture of jive. In SoftVis
’05: Proceedings of the 2005 ACM symposium on Software visualization, pages 95–104,
New York, NY, USA, 2005. ACM. ISBN 1-59593-073-6. doi: http://doi.acm.org/10.1145/
1056018.1056032.

Kathryn E. Gray and Matthew Flatt. Professorj: a gradual introduction to java through
language levels. In OOPSLA ’03: Companion of the 18th annual ACM SIGPLAN confer-
ence on Object-oriented programming, systems, languages, and applications, pages 170–177,
New York, NY, USA, 2003. ACM. ISBN 1-58113-751-6. doi: http://doi.acm.org/10.1145/
949344.949394.

T. Dean Hendrix, II James H. Cross, and Larry A. Barowski. An extensible framework for
providing dynamic data structure visualizations in a lightweight ide. SIGCSE Bulletin, 36
(1):387–391, 2004. ISSN 0097-8418. doi: http://doi.acm.org/10.1145/1028174.971433.

C. D. Hundhausen, S. A. Douglas, and J. T. Stasko. A meta-study of algorithm visualization
effectiveness. Journal of Visual Languages & Computing, 13:259–290, 2002.

18 Fifth Program Visualization Workshop

R. Jeffries, A. Turner, P. Polson, and M. Atwood. The processes involved in designing software.
Cognitive Skills and Their Acquisition., pages 225–283. Erlbaum, Hillsdale, N.J., 1981.

J. Kim and F.J. Lerch. Why is programming (sometimes) so difficult? programming as
scientific discovery in multiple problem spaces. Information Systems Research, 8(1):25–50,
1997.

M. Kölling. Teaching object orientation with the blue environment. Journal of Object-Oriented
Programming, 12(2):14–23, 1999.

M. Kölling, B. Quig, A. Patterson, and J. Rosenberg. The bluej system and its pedagogy.
Computer Science Education, 13(4), December 2003.

Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan, Yi-
fat Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz Wilusz.
A multi-national, multi-institutional study of assessment of programming skills of first-
year cs students. SIGCSE Bulletin, 33(4):125–180, 2001. ISSN 0097-8418. doi: http:
//doi.acm.org/10.1145/572139.572181.

Iain Milne and Glenn Rowe. Difficulties in learning and teaching programming - views of
students and tutors. Education and Information Technologies, 7(1):55–66, 2002. ISSN
1360-2357. doi: http://dx.doi.org/10.1023/A:1015362608943.

Andrés Moreno, Niko Myller, Erkki Sutinen, and Mordechai Ben-Ari. Visualizing programs
with jeliot 3. In AVI ’04: Proceedings of the working conference on Advanced visual in-
terfaces, pages 373–376, New York, NY, USA, 2004. ACM. ISBN 1-58113-867-9. doi:
http://doi.acm.org/10.1145/989863.989928.

Thomas L. Naps, Guido Rössling, Vicki Almstrum, Wanda Dann, Rudolf Fleischer, Chris
Hundhausen, Ari Korhonen, Lauri Malmi, Myles McNally, Susan Rodger, and J. Ángel
Velázquez-Iturbide. Exploring the role of visualization and engagement in computer science
education. In ITiCSE-WGR ’02: Working group reports from ITiCSE on Innovation and
technology in computer science education, pages 131–152, New York, NY, USA, 2002. ACM.
doi: http://doi.acm.org/10.1145/960568.782998.

Rockford J. Ross. Experience with the dynamod program animator. In SIGCSE ’91:
Proceedings of the twenty-second SIGCSE technical symposium on Computer science ed-
ucation, pages 35–42, New York, NY, USA, 1991. ACM. ISBN 0-89791-377-9. doi:
http://doi.acm.org/10.1145/107004.107013.

Otto Seppälä. Program state visualization tool for teaching cs1. In Program Visualization
Workshop, pages 62–67, Warwick, UK, 2004. The University of Warwick.

Ben Shneiderman. The eyes have it: A task by data type taxonomy for information visual-
izations. In VL ’96: Proceedings of the 1996 IEEE Symposium on Visual Languages, page
336, Washington, DC, USA, 1996. IEEE Computer Society. ISBN 0-8186-7508-X.

Fang Wei, Sally H. Moritz, Shahida M. Parvez, and Glenn D. Blank. A student model for
object-oriented design and programming. J. Comput. Small Coll., 20(5):260–273, 2005.
ISSN 1937-4771.

Stelios Xinogalos, Maya Satratzemi, and Vassilios Dagdilelis. An introduction to object-
oriented programming with a didactic microworld: objectkarel. Comput. Educ., 47(2):
148–171, 2006. ISSN 0360-1315. doi: http://dx.doi.org/10.1016/j.compedu.2004.09.005.

Fifth Program Visualization Workshop 19

Visualization of Procedural Abstraction

Stefan Schaeckeler, Weijia Shang, Ruth Davis
Department of Computer Engineering, Santa Clara University, Santa Clara, CA 95053

sschaeck@engr.scu.edu

Abstract

Visualizing impacts of an optimization pass helps to reason about, and to gain insight
into, the inner workings of the optimization pass. In this paper, we visualize the impacts of
two procedural abstraction passes. For this, we modified two procedural abstraction post
pass optimizers to visualize the difference in machine code before and after optimization
by drawing abstracted fragments in the original program. We explain how the generated
visualizations aid in better understanding the optimization passes.

1 Introduction

Visualizations are often used in mechanical engineering, chemistry, physics, and medicine
Diehl (2007), but are occasionally used in computer science to aid program understanding as
well (see for example the ACM Symposia on Software Visualization (SOFTVIS), the IEEE
Workshops on Visualizing Software for Understanding and Analysis (VSSOFT), or the Pro-
gram Visualization Workshops (PVW)). For program understanding, program executions gen-
erate often very large traces. It is a challenging task to represent these masses of data in a
digestable form and a lot of research is conducted for appropriate visualization techniques.
Visualizations for understanding optimization passes are not always so complex. We found
for procedural abstraction natural visual representations, that are simple yet powerful enough
to completely understand in its entirety. We believe visualizations are a great aid for com-
piler writers to understand their optimization passes in greater depth and we hope the gained
insight might help them to improve the optimization passes.

In this paper, we visualize procedural abstraction. All we see from running a size optimiza-
tion pass such as procedural abstraction is one number only—the reduction of the program.
To make its inner workings visible, we generate from the internal data-structures of our opti-
mization passes several visualizations. After a brief review in the next section on procedural
abstraction, we introduce these visualizations in sections 3 and 4 and explain how they help
in better understanding procedural abstraction. Section 5 discusses future work and section 6
concludes the paper.

2 Background on Procedural Abstraction

Optimizing compilers traditionally target execution speed, but may also target code size as this
becomes increasingly important for embedded systems. A common technique for compacting
code is procedural abstraction. In its standard form, hereafter called traditional procedural
abstraction, equivalent code fragments are identified, abstracted in a new procedure, and
eventually replaced by procedure calls. This saves all but one occurrence of the fragments
and adds a small overhead of one procedure call per fragment and one return instruction
per abstracted procedure. Abstracted procedures are minimalistic functions without function
prologues or epilogues.

Example 1 (Traditional Procedural Abstraction) In the original code of Fig. 1a, either
two code fragments à four instructions (Fig. 1b) or three code fragments à three instructions
(Fig. 1c) can be abstracted. Whatever abstraction is more beneficial in terms of code size can
then be chosen.

The challenge of procedural abstraction is to efficiently find fragments for abstraction.
Fraser et al. (1984) and Cooper and McIntosh (1999) use suffix trees to identify fragments for

20 Fifth Program Visualization Workshop

a. load r1, $5200 load r1, $5200 load r1, $5300
add r1, r2 add r1, r2 add r1, r2
rot r1, $2 rot r1, $2 rot r1, $2
mul r1, r1 mul r1, r1 mul r1, r1

b. call f call f load r1, $5300 f: load r1, $5200
add r1, r2 add r1, r2
rot r1, $2 rot r1, $2
mul r1, r1 mul r1, r1

ret

c. load r1, $5200 load r1, $5200 load r1, $5300 f: add r1, r2
call f call f call f rot r1, $2

mul r1, r1
ret

Figure 1: Example of Procedural Abstraction

abstraction in O(n∗log(n)) time. The details do not concern us in this paper and we assume
fragments for abstraction are already identified.

3 Visualization of Procedural Abstraction

We implemented in (Schaeckeler and Shang, 2008) a traditional procedural abstraction post-
pass optimizer for Intel’s 32-bit architecture (IA32). This optimization pass could reduce code
sizes of seven programs from the MediaBench embedded systems benchmark suite on average
by 2.502%. We use in this paper the mpeg encoder mpeg2enc optimized with earlier versions
of our compactors as a running example. It has with 13, 599 instructions and 49, 927 bytes
the right size for visualization on paper. We found in this program 333 abstracted fragments
which could be abstracted in 66 procedures. This results in a compression ratio of 98.840%.

Programs are usually visualized either graph or pixel based. For procedural abstraction,
we worked out several pixel based visualizations, that are not only a natural choice, but avoid
also known shortcomings of graph based visualizations like scalability, layout and mapping
problems.

We visualize instructions in the original program as what we call a program map. For
program maps, there can be two levels of abstraction in which pixels represent either whole
instructions or individual bytes of instructions, in ascending order from left to right, starting
in the upper left corner and wrapping around at the end of each line. As the main purpose
of program maps is to identify fragments, it is convenient to introduce a new term and call
all pixels representing an individual fragment a string.

Pixels are quadratic and have length and area. Color may be used to emphasize pixels and
strings. In the byte representation, the lengths and areas of pixels and strings are proportional
to the sizes of instructions and fragments, and their quantities can be easily estimated from
the visualization. If this is not necessary, then the more compact instruction representation
may be sufficient and can be used instead.

Procedural abstraction has a flat view on the code, because abstracted are fragments, i.e.
sequences of instructions, which are in turn bytes. Hence, the two levels of abstraction are
enough to capture its essence.

We generated program maps for the first time in (Schaeckeler and Shang, 2008). We used
for each abstracted instruction the same color and it was not possible to distinguish adjunct
abstractions from single abstractions. In Fig. 3, we refine the program map by using light
gray for the last pixel of an otherwise gray string. This reveals two times adjunct fragments

Fifth Program Visualization Workshop 21

which we haven’t seen so before.
In Fig. 3, we see a lot of fragments consisting of one instruction, only. Table 1 gives a

detailed breakdown. More than 50% of all fragments are individual instructions, while the
remaining fragments consist of two to seven instructions. Fig. 4 gives the program map over
bytes and light gray—here of the last five pixels—is used to mark ends of strings, again. It
can be seen that there are a lot of short fragments. Table 2 gives a detailed breakdown. More
than 50% of all fragments are with six or seven bytes pretty short. The remaining fragments
extend gradually up to 20 bytes, and then there are two additional fragments of 27 bytes.

Table 1: Number of Fragments and Procedures over their Lengths in Instructions

sequence length [instr.] 0 1 2 3 4 5 6 7 ≥ 8
number of fragments 0 182 43 23 34 39 10 2 0

number of procedures 0 18 12 7 12 11 5 1 0

Table 2: Number of Fragments and Procedures over their Lengths in Bytes

sequence length [bytes] ≤ 5 6 7 8 9 10 11 12 13
number of fragments 0 47 144 8 10 7 39 22 9

number of procedures 0 4 15 2 1 2 7 9 4

14 15 16 17 18 19 20 21 22 23 24 25 26 ≥ 27
17 10 8 4 2 2 2 0 0 0 0 0 2 0
8 4 4 2 1 1 1 0 0 0 0 0 1 0

As short fragments imply small net gains, we further investigate the net gains of fragments.
A light gray pixel in Fig. 3 can be interpreted to represent the function call instruction
responsible for the overhead per fragment, but this is a distorted view as instruction lengths
range on IA32 from one to 17 bytes. A function call instruction call <32-bit address>, for
instance, is five bytes in length, one byte for the opcode and four bytes for the address field.
A byte representation is necessary for capturing the function call overhead. Because the light
gray pixels of strings in Fig. 4 have exactly the size of a function call overhead, this figure
can be used to analyze the overhead. Net gains of abstracted fragments are then represented
by the remaining gray pixels. For each abstracted procedure, there is also an overhead of
one byte for the return instruction ret. The accumulated area for all 66 return instructions
occupies 27.5% of a line and is given at the bottom of Fig. 4 as a black string.

The areas of all 333 abstracted fragments, e.g. of all gray and light gray pixels, compromise
4.627% of the whole program map, i.e. 4.627% or 2, 310 bytes of code is abstractable. As the
overhead is five bytes per abstracted fragment and one byte per abstracted procedure, this
results in an accumulated overhead of 1, 731 bytes or 3.461% of the program size and what
remains is a net gain of merely 579 bytes or 1.160%.

That the overhead is almost three times the net gain is quite disappointing. This obser-
vation motivated us to investigate alternative computer architectures with different function
call / return overheads. If the function call / return overhead were less, then there will be
not only less overhead for abstraction, but also further abstractable fragments will emerge,
because more fragments have then a non-negative benefit, i.e. are larger than the function call
instruction. Table 3 gives statistics for function call and return instructions of varying sizes.
The upper limit is for no function call / return overhead and would result in a reduction of
20.548%. The corresponding program maps of Fig. 5 and Fig. 6 show the high redundancies
of instructions. Two interesting cases that can be implemented in hardware, are:

22 Fifth Program Visualization Workshop

call instr. size = 5 bytes; return instr. size = 0 bytes: Encoding the length of the ab-
stracted procedure in a function call instruction can reduce the program size by 1.318%.
This has also other interesting consequences. Abstracted procedures can overlap (see
Liao et al. (1999)) or don’t need to be abstracted in new procedures (see Lau et al.
(2003)). This might lead to further reductions.

call instr. size = 3 bytes; return instr. size = 1 byte: A new function call instruction
with a relative address mode can reach all procedures in programs ≤ 65, 536 bytes with
an address field size of two bytes. This can reduce the program size by 3.603%. If this
addressing mode is then also used for regular functions, then a further reduction can be
expected.

Table 3: Statistics over the Lengths of Call and Return Instructions

size of call [bytes] 0 1 2 3 4 5
size of ret [bytes] 0 0 0 0 0 0

procedures [#] 654 600 370 226 138 79
fragments [#] 4026 3470 1610 969 651 376

overhead [bytes] 0 3470 3220 2907 2604 1880
net gain [bytes] 10259 6230 3339 2025 1186 658

compression [%] 20.548 12.478 6.688 4.056 2.375 1.318

size of call [bytes] 0 1 2 3 4 5
size of ret [bytes] 1 1 1 1 1 1

procedures [#] 653 491 309 180 121 66
fragments [#] 4024 3231 1458 852 609 333

overhead [bytes] 643 3722 3225 2736 2557 1731
net gain [bytes] 9605 5630 2969 1799 1048 579

compression [%] 19.238 11.276 5.947 3.603 2.099 1.160

Not all fragments can be used for abstraction. Fragments must be single entry–single
exit regions and can extend in our implementation up to single basic blocks. Furthermore,
fragments should not include function calls or stack accesses1 as calls to abstracted procedures
modify the stack by pushing the return address on the stack and then wrong stack slots might
be accessed. See (Schaeckeler and Shang, 2008) for implementation details. Keeping fragments
within basic blocks but ignoring the latter two constrains results in a saving of 3, 822 bytes or
7.655%. Fig. 7 and Fig. 8 give the corresponding program maps. Non-white colors indicate
abstracted instructions: gray is used for the regularly abstractable instructions, e.g. for the
instructions of Fig. 3 and Fig. 4, black for instructions accessing the stack and light gray
for the remaining instructions. Apparently, not being able to abstract stack accesses results
in a 6.6 times lower net gain. Fig. 7 and Fig. 8 suggest that this huge reduction is due to
black pixels, i.e. directly due to stack access instructions, but also due to light gray pixels,
i.e. indirectly due to stack access instructions, which, when part of a fragment, can reduce
the abstractable part below the size of the call instruction or influence the combinations of
fragments for abstraction and leave some fragments unabstracted.

As mentioned in the previous paragraph, fragments lie within single basic blocks. The
program map2 in Fig. 9 shows how fragments fill out basic blocks. Abstracted fragments are

1Our current implementation is very conservative in the sense that every instruction accessing the stack- or
frame pointer register is regarded as a stack access.

2The program map over instructions is enough as a program map over bytes doesn’t give us in this case any
additional information.

Fifth Program Visualization Workshop 23

represented as gray pixels and basic block boundaries as black pixels. For this, we replace each
jump and branch instruction with a black pixel and insert at each jump or branch target a
black pixel. This distorts the program map somewhat. It can be seen that 36.949% abstracted
fragments are whole basic blocks while 63.051% are not.

To reduce the cost of finding fragments, Debray et al. (2000) limit the search for fragments
in their compactor to whole basic blocks, only. We learned from our visualization that this
would drastically reduce the efficiency of our compactor.

4 Visualization of Procedural Abstraction Variants

A variant of procedural abstraction, hereafter called tail merging procedural abstraction,
merges tails of fragments as shown for Fig. 2a in Fig. 2b. Fragments of different sizes are
replaced by procedure calls into the procedure.

a. load r1, $5200 load r1, $5200 load r1, $5300
add r1, r2 add r1, r2 add r1, r2
rot r1, $2 rot r1, $2 rot r1, $2
mul r1, r1 mul r1, r1 mul r1, r1

b. call f1 call f1 load r1, $5300 f1: r1, $5200
call f2 f2: add r1, r2

rot r1, $2
mul r1, r1
ret

Figure 2: Example of Tail Merging Procedural Abstraction

Earlier work on tail merging procedural abstraction by Liao et al. (1999) and Gyimóthy
et al. (2005) did not provide any comparison with traditional procedural abstraction and it
remained unclear whether there is a visible improvement for real programs. This lack of
comparison data motivated us to write not only a post pass optimzer for traditional proce-
dural abstraction, but also one for tail merging procedural abstraction. We have shown in
(Schaeckeler and Shang, 2008) that traditional procedural abstraction and tail merging pro-
cedural abstraction could reduce the code size of seven MediaBench programs on average by
2.502% and 2.716%, respectively.

To understand from where the improvements were coming, we generated in Fig 10a a
program map for traditional procedural abstraction and in Fig 10b a program map for tail
merging procedural abstraction. As they are too similiar, it was necessary to generate in
addition the difference map of Fig 10c. Gray pixels represent instructions that could be
abstracted with both procedural abstractions. Black pixels represent instructions that could
be abstracted with tail merging procedural abstraction only, and light gray pixels represent
instructions that could be abstracted with traditional procedural abstraction only. The black
pixels in Fig. 10c indicate the higher code size reduction of tail merging procedural abstraction.

As before, the program maps of Fig. 10a and 10b have been directly generated from our
optimization passes from their internal data-structures. These program maps have been the
input for a script to generate the difference map of Fig. 10c.

When we familiarized us with traditional and tail merging procedural abstraction, we ex-
pected fragments to extend, e.g. finding in Fig. 10c black sub-strings left-adjunct to gray
sub-strings. We found twelve such extended fragments, but to our surprise, we found also 21
black strings in isolation, i.e. new fragments emerged and joined other fragments for abstrac-
tion. Visualization gave us a deeper understanding of tail merging procedural abstraction.

24 Fifth Program Visualization Workshop

5 Future Work

We intend to write an interactive program map, e.g. a java applet which lets the user inter-
actively explore abstractions in a program. It will be able to not only display the program
maps discussed so far, but also allow to show references between abstractions of a procedure,
e.g. clicking on a fragment will highlight all other fragments of the same procedure.

Interactively removing and re-adding fragments will show the current compression ratio
and, if sufficient profiling information is available, show the estimated run-time of the program.

We hope that such an interactive map will not only remain a toy but that it will give us
also playful insight into interactions between abstractions, run-time, and compression ratio.

6 Conclusion

We hope this paper may inspire other compiler writers to visualize optimization passes to
help them to reason about, and to understand, the inner workings. Visualizations can be also
used in compiler classes to make optimizations less abstract and to give students a better
understanding of where and how often optimizations are applied in the code.

References

Keith D. Cooper and Nathaniel McIntosh. Enhanced code compression for embedded RISC
processors. In PLDI ’99: Proceedings of the ACM SIGPLAN 1999 conference on Program-
ming language design and implementation, pages 139–149, New York, NY, USA, 1999. ACM
Press. ISBN 1-58113-094-5.

Saumya K. Debray, William Evans, Robert Muth, and Bjorn de Sutter. Compiler techniques
for code compaction. ACM Trans. Program. Lang. Syst., 22(2):378–415, 2000. ISSN 0164-
0925.

Stephan Diehl. Software Visualization. Springer Berlin, 2007.

Christopher W. Fraser, Eugene W. Myers, and Alan L. Wendt. Analyzing and compressing as-
sembly code. In SIGPLAN ’84: Proceedings of the 1984 SIGPLAN symposium on Compiler
construction, pages 117–121, New York, NY, USA, 1984. ACM Press. ISBN 0-89791-139-3.

Tibor Gyimóthy, Rudolf Ferenc, Gábor Lehotai, Ákos Kiss, and Attila Bicsak. US patent nr.
7,293,264: Method and a device for abstracting instruction sequences with tail merging,
2005.

Jeremy Lau, Stefan Schoenmackers, Timothy Sherwood, and Brad Calder. Reducing code size
with echo instructions. In CASES ’03: Proceedings of the 2003 international conference on
Compilers, architecture and synthesis for embedded systems, pages 84–94, New York, NY,
USA, 2003. ACM. ISBN 1-58113-676-5.

Stan Liao, Srinivas Devadas, and Kurt Keutzer. A text-compression-based method for code
size minimization in embedded systems. ACM Trans. Des. Autom. Electron. Syst., 4(1):
12–38, 1999. ISSN 1084-4309.

Stefan Schaeckeler and Weijia Shang. Code compaction with reverse prefix trees. In CASES ’08
Proceedings of the 2008 International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems, New York, NY, USA, 2008. ACM Press. Submitted, under review.

Fifth Program Visualization Workshop 25

Figure 3: Visualization of Abstracted Fragments [instructions]: Fragments include a light
gray End Marker.

Figure 4: Visualization of Abstracted Fragments [bytes]: Fragments include a five Pixel long
light gray End Marker of the Size of the Function Call Overhead.

26 Fifth Program Visualization Workshop

Figure 5: Visualization of Abstracted Fragments [instructions]: Fragments for no Function
Call / Return Overhead.

Figure 6: Visualization of Abstracted Fragments [bytes]: Fragments for no Function Call /
Function Overhead.

Fifth Program Visualization Workshop 27

Figure 7: Visualization of Abstracted Fragments [instructions]: Fragments including Func-
tion Calls and Stack Accesses in black.

Figure 8: Visualization of Abstracted Fragments [bytes]: Fragments including Function Calls
and Stack Accesses in black.

28 Fifth Program Visualization Workshop

Figure 9: Visualization of Abstracted Fragments [instructions]: Fragments within Basic
Blocks.

a. Traditional Procedural Abstraction

b. Tail Merging Procedural Abstraction

c. Difference of both Abstractions

Figure 10: Visualization of Traditional and Tail Merging Procedural Abstracted Fragments.

Fifth Program Visualization Workshop 29

First Steps Towards a Visualization-Based Computer Science
Hypertextbook as a Moodle Module

Guido Rößling, Teena Vellaramkalayil
CS Department, TU Darmstadt

Hochschulstr. 10
64289 Darmstadt, Germany

roessling@acm.org

Abstract

Hypertextbooks for Computer Science contents present an interesting approach to
better support learners and integrate algorithm animations into the learning materials.
We have developed a prototype for integrating a selection of the functionality of such
a hypertextbook into the established Moodle LMS. This paper describes the goals and
realization of this module together with an example.

1 Introduction

Algorithm visualization (AV) has a long tradition in visually presenting dynamic contents -
typically, algorithms and data structures. The discipline and its associated tools promise easier
learning and better motivation for learners. However, while surveys usually show interest in
AV use, the adoption of AV by educators is lower than the proponents and developers of such
systems would hope and expect. In the following, we will use the term AV whenever we refer
to algorithm or program visualization or animation.

In a survey performed by the ITiCSE 2002 Working Group on ‘Improving the Educational
Impact of Algorithm Visualization”, the main reasons why educators do not use AV materials
in their lectures can be reduced to two aspects: the time required to do so and the lack of
integration with existing teaching materials (Naps et al., 2003).

Since that report, several approaches have addressed the time aspect, for example by
providing tools or generators for quickly producing content that fits the educator’s or learner’s
expectations, and allow the user to specify the input values (Rößling and Ackermann, 2006;
Naps, 2005). However, the integration of AV into the learning materials still needs to be
addressed.

A 2006 ITiCSE Working Group therefore proposed a combination of hypertext-based
textual materials with image, video, and AV content, as well as aspects from a learning
management system (Rößling et al., 2006). This combination was called a Visualization-based
Computer Science Hypertextbook (VizCoSH) to illustrate the main aspect form the Working
Group’s point of view: the seamless integration of AV materials into the learning materials
used for a course.

In this paper, we present our first approach of implementing a VizCoSH. As stated by
previous authors of related hypertextbooks, the effort required to create a full-fledged hy-
pertextbook is intense. The well-known theory hypertextbook Snapshots of the Theory of
Computing (Ross, 2006; Boroni et al., 2002), while far from finished, already represents the
work of about twelve years. Therefore, it seems unlikely that a full-fledged VizCoSH - in-
cluding the features “borrowed” from course or learning management systems described in
the Working Group Report (Rößling et al., 2006) - could already exist if it were built from
scratch since 2006.

Our first prototype for a VizCoSH is based on the popular and established Moodle learning
content management system (Cole and Foster, 2007). Section 2 presents the goals for the
development of the modue. Section 3 describes the approach taken for meeting these goals,
followed by a short demo of the resulting content pages in Moodle in Section 4. Section 5
presents a brief evaluation of the module and concludes the paper.

30 Fifth Program Visualization Workshop

2 Goals for implementing a VizCoSH

The report that presented the concept of a VizCoSH set many ambitious goals for a full-fledged
VizCoSH. For example, these concerned navigation, adaptation of the contents and learning
paths to the user, and the integration of tracking and testing facilities to better determine the
user’s understanding. While most of the goals are already implemented in “some” systems,
their combination - especially with the seamless integration of animations envisioned for a
VizCoSH - has not been managed so far.

For the purpose of this research, we had to scale down the expectation towards a full
VizCoSH to a manageable amount. Essentially, we expected that our VizCoSH prototype
should offer the following features:

• Adaptation of layout (such as fonts and color settings) and language to the user’s needs,

• Addition of arbitrary elements, such as text blocks, images, or hyperlinks at any position
in the contents,

• Support for asking multiple-choice quizzes and performing knowledge tests,

• Support for different user roles, at least distinguishing between teacher and student,

• Logging the user’s activities, in order to be able to track individual progress,

• Basic communication features, such as chats, forums and votings,

• Structured textual elements organized similarly to a text book (otherwise, the resource
could not be called a hypertextbook),

• Enabling the printing of the learning materials with about the same comfort as for a
“regular” text book,

• Seamless integration of AV content at (almost) any position in the contents,

• Support for fixed AV content as well as for “random” or user-generated AV content.

Many of these goals are already addressed by a variety of software. For example, AV
systems such as Animal already provide the last two items in the list (Rößling and Acker-
mann, 2006). For most of the communication- and layout-based goals, there is a whole set
of software that is geared to provide these aspects: learning content management systems
including the popular Moodle system (Cole and Foster, 2007). We therefore decided to base
our implementation on Moodle, which already offers the first six of the 10 required features.

3 Realizing a VizCoSH prototype as a Moodle module

Moodle is a highly extensible system, making it (comparatively) easy to provide additional
features. The large international developer community can help in locating bugs and fixing
them. However, the popularity of Moodle and the large number of developers also means that
the number of offered modules or plugins for download is very large - currently, the web page
lists more than 320 such elements.

The first six aspects - adaption of the visual layouts and language, management of arbitrary
elements, quizzes and tests, user roles, logging, and communication features - are already inte-
grated into Moodle and do not require further work. For the text structure similar to a book
including useful printing facilities, we found a fitting “activity module” called Book (Škoda,
2007). This module provides the “significant structure” required by a VizCoSH, ensuring
that the creation of meaningful text-based learning materials with AV content additions are
possible.

Fifth Program Visualization Workshop 31

The Book module allows printing the current “chapter” or the full book. Some limitations
exist; for example, the author of the module has decided not to support sub-chapters or
deeper levels of structure. Additionally, the module is not interactive, so that forums, chats
etc. cannot be integrated into the content, but can be linked from anywhere in the page.

We have extended the Book module to include support for AV content and renamed it
to vizcosh. Teachers can maintain a list of supported AV content files inside the module.
New AV content can be added by providing the following information about the content:
title, description, author (by default, the user currently logged in), and topic(s) covered.
Additionally, the animation file has to be uploaded, optionally together with an image to be
used as a thumbnail. Finally, the user has to select the animation format.

The vizcosh module currently supports the following formats:

• JAWAA (Akingbade et al., 2003),

• GAIGS (Naps and Rößling, 2006),

• JHAVÉ with a local file as a parameter (Naps, 2005),

• JHAVÉ with a specific input generator (Naps, 2005),

• the generators offered by Animal, where the content author can either select the gener-
ator front-end, preselect an algorithm category, or specify a specific generator (Rößling
and Ackermann, 2006),

• and the internal and AnimalScript-based formats supported by Animal (Rößling and
Freisleben, 2002).

Each animation format description also contains a template for starting the content with
an appropriate JNLP file. The JNLP file uses a set of placeholders to substitute the actual
file name etc. when it is started inside Moodle, as shown in Table 1. Note that depending on
the underlying system, not all of these placeholders may be used.

Variable Use

JNLP-PATH Describes the base path for all relative paths used in the JNLP file,
as specified by the codebase attribute of the JNLP specification.

JNLP-FILENAME Defines the name (relative to JNLP-PATH) for the JNLP file, used
for the href attribute of the JNLP root element.

JAR-PATH Defines the location of the JAR file(s) for the jar element of the
resources JNLP element; describes where the JAR file(s) for the
AV system are to be found.

DATA-TYPE Describes the type of the file, needed if the chosen system can
handle more than one type of file.

DATA-PATHFILENAME Specifies the path and name for a file attribute to be passed in to
the chosen AV system.

Table 1: Variables used for JNLP templates

An example JNLP template for the Animal AV system is shown in Listing 1.

Listing 1: Example JNLP specification for Animal

1 <?xml version=” 1 .0 ” encoding=” utf−8”?>
2 < !−− JNLP S p e c i f i c a t i o n f o r Animal 2 . 3 . 1 4 d i s t r i b u t i o n −−>
3 <jnlp spec=”1.0+”
4 codebase=”<JNLP−PATH>”

32 Fifth Program Visualization Workshop

5 href=”<JNLP−FILENAME>”>
6 <information>
7 <t i t l e>Animal Algorithm Animation , v e r s i o n 2 . 3 . 1 4</ t i t l e>
8 <vendor>Animal Developer Team / Dr . Guido Roes s l i ng</vendor>
9 <homepage href=” h t t p : //www. animal . ahrgr . de” />

10 <description>Animal Algorithm Animation , v . 2 . 3 . 1 4</description>
11 <description kind=” shor t ”>An e x t e n s i b l e a lgor i thm animation t o o l
12 used f o r Computer Sc i ence Education purposes</description>
13 <icon href=”Animal . g i f ”/>
14 <icon kind=” sp la sh ” href=”Animal . g i f ”/>
15 <of f l ine−allowed/>
16 </ information>
17 <security>
18 <al l−permissions/>
19 </ security>
20 <resources>
21 <j2se href=” h t t p : // java . sun . com/ products / autodl / j 2 s e ” version=”1.5+”/>
22 <jar href=”<JAR−PATH>/Animal −2 .3 . 14 . j a r ”/>
23 </resources>
24 <application−desc>
25 <argument><DATA−TYPE></argument>
26 <argument><DATA−PATHFILENAME></argument>
27 </application−desc>
28 </ jnlp>

Lines 4 and 5 show that the JNLP-PATH and JNLP-FILENAME describe the location
of the JNLP specification file. Lines 6 to 16 provide metadata about the AV system (here,
the Animal AV system), such as the title, vendor, homepage, description and icon. In line
18, all permissions are requested to allow users to save animation files to their local disk.

The JAR file for running the AV content is defined in line 22. Finally, lines 25 and 26
describe the run-time parameters for an animation, here the format and name of the animation
file to be loaded.

Using the “Add Algorithm Visualization” button next to the standard editor, the user can
easily add AV content at the end of the text. To do so, he or she simply chooses one of the
existing elements from the AV content list, or creates a new entry. If the link appears in the
wrong place, it can easily be cut and pasted to the right target position.

4 Example Output

Figure 1 shows an excerpt of a VizCoSH page created using the Moodle module. On this
page, the image in the center is a link to the concrete visualization of the underlying sorting
algorithm (here, Selection Sort). When the user clicks on this image, the AV system is started
and shows the content indicated by the thumbnail. Additionally, a set of links to different
alternative AV content are placed in the item list below the image, including the possibility
for the user to adapt the content to his own preferences.

To keep the Figure readable, we present only a segment without the navigation elements
placed above, below, and to the left of the page contents. The page also contains a paragraph
describing the algorithm (Selection Sort) above Figure 1, as well as a paragraph about the
complexity of the algorithm. Additionally, a number of exercises are also put on the page.
In a future version of the VizCoSH, the user shall also be able to submit a solution to these
exercise tasks for (semi-)automatic grading. However, this part of the module does not exist
yet. We mention it to illustrate why a VizCoSH can be so much more than a “simple” text
book. A “complete” VizCoSH can incorporate automatically evaluated tests that may also

Fifth Program Visualization Workshop 33

have a effect on how further content is presented to the user - or even which content will be
visible.

Figure 1: VizCoSH example from the vizcosh Moodle module

Figure 2 shows an example of the (modified) content editor provided by the vizcosh module.
The WYSIWYG editor is already provided by Moodle. Our addition to this editor is the
button Add Algorithm Visualization shown next to the keyboard icon. When the user clicks
on this button, he is led to the collection of all registered animations. By selecting one of
these entries, the associated thumbnail or text is inserted into the text editor - the AV content
is now ready to be run as soon as the changes have been saved.

If the user wants to add an algorithm visualization to the VizCoSH, he clicks on a “+”
icon above the list of known AV content. He is then led to the page shown in Figure 3.
Here, the user can enter the title and description of the AV content. The “Author” field is
automatically set to the name of the user currently logged in to Moodle. The “Format” list
displays a set of predefined formats. Each format has a proper JNLP file that is automatically
adapted to run the new animation, based on the animation file uploaded by the user and the
JNLP features. Finally, the user can decide to use the default thumbnail , download a new
one, or instead display only a text for the hyperlink. By pressing the “Create” button, the
file is uploaded and placed into the proper directory, and a new JNLP file will be created that
fits the AV content.

5 Evaluation and Future Work

Using the vizcosh Moodle module presented in this paper, it is easy to incorporate animations
of any of the supported types listed in Section 3. The average time effort for adding a new

34 Fifth Program Visualization Workshop

Figure 2: VizCoSH example from the vizcosh Moodle module

Figure 3: VizCoSH example from the vizcosh Moodle module

Fifth Program Visualization Workshop 35

visualization to a given module page is less than two minutes, as it only requires creating a
new animation entry and selecting the proper animation format.

At the moment, our module only supports contents that are based on a scripting notation:
JAWAA, GAIGS, JHAVÉ and Animal. This does not mean that the approach is in any way
restricted to scripting input - it would be just as easy to support animation systems that use
a stored file of some type. However, as we are most familiar with the listed systems, there
is currently no example for the support of other systems. There are real “technical” reasons
for this lack of support. The main task to be done is to provide a working JNLP template
for a new system, similar to the one shown in Listing 1. The author can create a new format
template with a few mouse clicks by opening the “Format Editor” using the button next to
the Format list shown in Figure 3. However, the basic JNLP file has to be edited manually
to adapt it to the target format. This especially concerns the application-desc element of
the JNLP specification, which states the main class of the JAR file(s) and the invocation
arguments. The module itself does not have to be changed if a new format is introduced.

The ability to print the current chapter including the thumbnails is also helpful. Here, the
underlying Book module simply renders the page content(s) without the navigation elements
and redisplays them as a Web page in a new browser window. Of course, the dynamic
visualization elements are reduced to static images in this approach.

Our prototype can only represent the first step towards implementing a VizCoSH. Still,
we expect that it will be easy to use for others once we publish the module, and may make
adoption of AV easier. Future work for the module includes a seamless incorporation of
interactive features, such as Moodle’s forums and chat abilities with the page content and the
visualizations. For example, users should be able to link to a given visualization easily in all
other areas of Moodle. User tracking for performance in built-in knowledge tests would be
another important addition.

We are interested in cooperating with researchers and teachers who want to use the module.
This especially concerns the support for other algorithm animation or visualization systems
that can be run using Java Webstart. Several persons may not use Moodle, but some other
platform, for example due to a university-enforced policy. Most of the module is not specific
to Moodle and should be easy to carry over to other learning content management systems
or content management systems, such as Drupal, Plone or Typo3. The main Moodle-specific
aspect is the connection to the user management and database, which has to rewritten for
each target platform.

We are also looking for partners who could contribute content, and allow us to take one
step further towards the vision of a “community-shared” VizCoSH, as anticipated by the
ITiCSE 2006 Working Group (Rößling et al., 2006).

References

Ayonike Akingbade, Thomas Finley, Diana Jackson, Pretesh Patel, and Susan H. Rodger.
JAWAA: Easy Web-Based Animation from CS 0 to Advanced CS Courses. In Proceedings
of the 34th ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE
2003), Reno, Nevada, pages 162–166. ACM Press, New York, 2003.

Christopher Boroni, Frances Goosey, Michael Grinder, and Rockford Ross. Active Learning
Hypertextbooks for the Web. Journal of Visual Languages and Computing, 13(2):341–354,
2002.

Jason Cole and Helen Foster. Using Moodle: Teaching with the Popular Open Source Course
Management System. O’Reilly, 2007. ISBN 978-0596529185.

Thomas Naps. JHAVÉ – Addressing the Need to Support Algorithm Visualization with Tools
for Active Engagement. IEEE Computer Graphics and Applications, 25(6):49–55, December
2005.

36 Fifth Program Visualization Workshop

Thomas L. Naps and Guido Rößling. JHAVÉ - more Visualizers (and Visualizations) Needed.
In Guido Rößling, editor, Proceedings of the Fourth Program Visualization Workshop, Flo-
rence, Italy, pages 112–117, June 2006.

Thomas L. Naps, Guido Rößling, Vicki Almstrum, Wanda Dann, Rudolf Fleischer, Chris
Hundhausen, Ari Korhonen, Lauri Malmi, Myles McNally, Susan Rodger, and J. Ángel
Velázquez-Iturbide. Exploring the Role of Visualization and Engagement in Computer
Science Education. ACM SIGCSE Bulletin, 35(2):131–152, June 2003.

Rockford J. Ross. Snapshots of the theory of computing. Available online at http://www.
cs.montana.edu/webworks/projects/snapshots/, 2006.

Guido Rößling and Tobias Ackermann. A Framework for Generating AV Content on-the-
fly. In Guido Rößling, editor, Proceedings of the Fourth Program Visualization Workshop,
Florence, Italy, pages 106–111, June 2006.

Guido Rößling and Bernd Freisleben. Animal: A System for Supporting Multiple Roles in
Algorithm Animation. Journal of Visual Languages and Computing, 13(2):341–354, 2002.

Guido Rößling, Thomas Naps, Mark S. Hall, Ville Karavirta, Andreas Kerren, Charles Leska,
Andrés Moreno, Rainer Oechsle, Susan H. Rodger, Jaime Urquiza-Fuentes, and J. Ángel
Velázquez-Iturbide. Merging Interactive Visualizations with Hypertextbooks and Course
Management. SIGCSE Bulletin inroads, 38(4):166–181, December 2006.

Petr Škoda. book module for Moodle. http://docs.moodle.org/en/Book_module, 2007.

Fifth Program Visualization Workshop 37

Towards Seamless Merging of Hypertext and Algorithm
Animation

Ville Karavirta
Helsinki University of Technology

Department of Computer Science and Engineering

vkaravir@cs.hut.fi

Abstract

The integration of algorithm animations into hypertext is seen as an important topic
today. This paper will present a prototype algorithm animation viewer implemented
purely using HTML and JavaScript. The viewer is capable of viewing animations in Xaal
(eXtensible Algorithm Animation Language). This solution is extremely suitable to be
used in hypertext learning material.

1 Introduction

Online learning material that students use by themselves is one of the typical usages of algo-
rithm animation (AA). Thus, the integration of algorithm animations into hypertext is seen
as an important topic today. The hope is that by making it easier to use AA in hypertext,
algorithm animations will become more widely adopted in teaching. This could then solve the
problem AA has been fighting for years: teachers believe that AA is beneficial but they do
not use it in their teaching (Naps et al., 2003b). In 2006, a working group titled Merging in-
teractive visualizations with hypertextbooks and course management convened at ITiCSE 2006
to consider how algorithm visualizations could and should be merged with hypertext. In the
working group report, the features seen important were included seamless visualization inte-
gration, increasing student engagement, providing a richer learning environment, integration
of CMS features, and aesthetics. (Rößling et al., 2006)

The technologies for building interactive web applications have evolved fast in the past
few years. This has made it possible to implement complex applications online. As a result,
we have seen a surge of many typical desktop applications being implemented as rich internet
applications (or, RIAs). These applications include mail clients, office software, and even
photo-editing software. The main benefits of online applications are the ease of which they
can be taken into use and the ease of maintenance from the developers perspective.

When the goal is to seamlessly merge algorithm visualizations with hypertext, a natural
future direction for algorithm animation systems is to implement them as RIAs. This paper
introduces one such solution. We will present a prototype algorithm animation viewer im-
plemented purely using HTML and JavaScript. The viewer is capable of viewing animations
in Xaal (eXtensible Algorithm Animation Language), a language designed to allow easy
transformation of AAs between various formats (Karavirta, 2007). This solution is extremely
suitable to be used in hypertext learning material. In the end, our goal is to create an inter-
active system integrated with hypertext that supports several current algorithm animation
description languages.

The paper is organized as follows. First, Section 2 introduces related research. Section 3
discusses the requirements for algorithm animation systems. Section 4 in turn describes the
implementation of the new AA viewer. Finally, Section 5 discusses the suitability of this new
approach and Section 6 provides conclusions and some possible future directions.

2 Related Work

Algorithm animation has been an active area of research. From the perspective of this paper,
the most important research directions are merging AA and hypertext and developing a
common, XML-based algorithm animation language.

38 Fifth Program Visualization Workshop

Early work on algorithm visualization in hypertextbooks has been done by Ross and
Grinder (2002). In Ross’s hypertextbooks, the inclusion of visualizations is done using Java
applets. This is currently a common way used also in, for example, TRAKLA2 (Malmi et al.,
2004), WinHIPE (Pareja-Flores et al., 2007), and a number of topic-specific visualizations.
Another popular method at the moment is Java WebStart where users launch Java applica-
tions from the web. This approach is used, for example, in Animal (Rößling and Freisleben,
2002), Jeliot (Moreno et al., 2004), and JHAVÉ (Naps, 2005).

In ITiCSE 2006, a working group considered how algorithm visualizations should be
merged with hypertext. The group considered visualization based hypertextbooks an im-
portant factor in promoting algorithm animation adoption in teaching. In the working group
report, the features of such hypertextbooks the working group considered important were
seamless visualization integration, increasing student engagement, providing a richer learning
environment, integration of CMS features, and aesthetics. (Rößling et al., 2006)

Another related research topic is the integration of algorithm animation systems. One
possible way to achieve this integration has been taken in the JHAVÉ algorithm visualization
environment. JHAVÉ allows AA system developers to add their systems as visualization
plugins into JHAVÉ. This way a common user interface for the end-user (typically, a student)
is achieved. Another approach to integration, focusing on the teacher’s point of view, is
developing a common format for the algorithm animation systems. In AV scope, this problem
has been discussed in another ITiCSE working group. The group’s report gives examples of a
common AA language and suggestions on an architecture to implement it (Naps et al., 2005).

One implementation of the ideas of the group is Xaal (eXtensible Algorithm Animation
Language) (Karavirta, 2007). Xaal supports describing animations on different levels of
abstraction: using graphical primitives and transformations on them, or using data structures
and operations on them. The goal of Xaal and the tools supporting it has been to allow easy
transformation of AAs between various formats/systems. The import and export features of
visualization systems is a significant research problem even in the wider scope of Software
Visualization (Diehl, 2007).

From the purely technical point of view, several rich internet application (or, RIA) tech-
nologies have been introduced lately. These technologies allow creating complex applications
that run in web browsers. In this work, we will focus on JavaScript. However, we will intro-
duce some alternatives in Section 4. On the field of JavaScript, a multitude of libraries aiding
in web development have been developed, and new ones are popping up constantly. Some of
the most well-known libraries include Dojo, mootools, Prototype, Scriptaculous, jQuery, and
Google Web Toolkit, just to mention a few.

When discussing algorithm animation in the context of education 1, one cannot ignore the
importance of user engagement. It has been shown that when users interact with algorithm
animations, it has a positive impact on their learning (Hundhausen et al., 2002). The levels
of engagement were specified by Naps et al. (2003a) by introducing a taxonomy of engage-
ment. The levels are viewing, responding, changing, constructing, and presenting. Viewing is
passive watching of an animation where a student only controls the visualization execution.
In responding, the student is engaged by asking questions about the visualization. Changing
requires the student to modify the visualization, for example, by changing the input data. In
constructing, the student is required to construct his/her own algorithm animation. At the
highest level, presenting, the student presents a visualization for an audience.

3 Requirements for an Algorithm Animation System

Over the years, a lot of research on the requirements of algorithm animation systems has been
carried out. Rößling and Naps (2002b) introduced pedagogical requirements for algorithm

1In fact, the most common application area for algorithm animation lies in context of education (Diehl,
2007).

Fifth Program Visualization Workshop 39

visualizations (AV). In another article, Rößling and Naps (2002a) provide more guidelines
for AV systems. The following summarizes the requirements of these two articles. We have
numbered the requirements to help referring to them later in the article.

• The system’s platform should be chosen to allow the widest possible target audience.
[R1]

• The system should support visualization rewinding so that users can return to the place
where they lost track of the content. [R2]

• Learners should be able to adapt the display to their current environment. This in-
cludes the choice of display background color to account for diverse lighting situations,
transition speed and display magnification. [R3]

• The AA system should preferably be a general-purpose system instead of a topic-specific
system due to the chance for reuse and better integration into a given course. The main
benefit of general-purpose systems is the ability to offer a common interface to a large
number of animations. [R4]

• The user should be offered the choice between smooth visualization transitions and
discrete steps. A break between consecutive steps, or at least a pause button, should
also be provided. [R5]

• The visualizations should include documentation that accompany the visualization.
There are several types of documentation: static documentation, dynamic documen-
tation aware of the algorithm’s state, and pedagogically dynamic documentation that
is aware of the algorithm’s state as well as the expertise of the student. [R6]

• Asking questions about the algorithms behavior in following states should be supported.
The questions should incorporate feedback. [R7]

• The system should be integrated with a database for course management facilities.
The database can then be used for example to store the points received by answering
questions. [R8]

• The system should allow users to provide custom input to the algorithm. [R9]

• The visualization should offer a structural view of the algorithm’s main parts that can
also be used to jump to associated visualization steps. [R10]

The articles also include two more requirements. One system requirement is that for the
visualization author, the system should make it possible to group questions based on the
question topic area and to assign a certain number of points to each question and inform the
learners on their progress. Another requirement is to include reusable visualization modules,
thus aiding in the authoring of AV. Since both of these are requirements for the author, we
do not consider it relevant in this case when building an algorithm animation viewer.

The requirements above in a way include engagement levels viewing (R2), responding (R7),
and changing (R9). However, we feel that AA system requirements should include support
even for the level constructing (we will add this as requirement R11).

4 Implementation

Based on the requirements for an algorithm animation viewer, we implemented such a system
using only HTML and JavaScript. As the whole viewer will be running inside the user’s
browser without any additional plugins, every computer equipped with a modern browser
can use the viewer (requirement R1). The implemented prototype can be easily incorporated

40 Fifth Program Visualization Workshop

Figure 1: Xaal viewer in browser showing an animation and related documentation.

into web material using Xaal animations as the source data. The following describes the
implemented features and, for the interested reader, the technologies used.

Figure 1 shows the animation viewer in the Safari browser. In the figure, arrow 1 points
to the surrounding HTML document. This document can contain any HTML. Arrow 2 points
to the animation controls. Here, we have the controls to rewind and move backwards and
forwards in the animation (fulfilling requirement R2). Arrow 3 points to the actual animation
window where the contents of the animation are visualized. Arrow 4, in turn, indicates the
settings panel for the animation viewer. Finally, arrow 5 points to the HTML documentation
that is included in the Xaal document and shown next to the visualization. The appearance
of the viewer can be easily changed using a different CSS stylesheet. Through CSS, one can
also change the positions and sizes of the various parts of the viewer (partially fulfilling R3).
To completely fulfill the requirement, features like speed and magnification changing should
also be supported.

Listing 1 gives an example on how to add a Xaal animation into an HTML document.
As can be seen, it is quite simple and requires only a few lines of code. Multiple animations
can be embedded on the same page by repeating lines 1 and 5 of Listing 1 with different data.

1 <div id="animation" class="jsxaal"></div>
2 ...
3 <script type="text/javascript">
4 Event.observe(window, ’load’, function() {
5 new JSXaalViewer("slides.xml", "animation", { showNarrative: true });
6 });
7 </script>

Listing 1: Example of including a Xaal animation in hypertext.

In addition to the code in Listing 1, the JavaScript files for the viewer need to be loaded,
which adds another couple of lines. Listing 2 shows these requirements. The first five lines
of these are libraries used by the viewer (see Section 4.1 for details about the libraries), while
the last line is the actual Xaal viewer.

1 <script src="lib/prototype/prototype.js" type="text/javascript"></script>
2 <script src="lib/pgf/pgf-core-min.js" type="text/javascript"></script>
3 <script src="lib/pgf/pgf-renderer-min.js" type="text/javascript"></script>
4 <script src="lib/scriptaculous/scriptaculous.js" type="text/javascript"></script>
5 <script src="lib/scriptaculous/effects.js" type="text/javascript"></script>
6 <script src="dist/jsxaal-core-min.js" type="text/javascript"></script>

Listing 2: Example of loading the libraries required to add a Xaal animation in hypertext.

Fifth Program Visualization Workshop 41

The graphical primitives of Xaal make it possible to use the viewer not only for animation
of data structures and algorithms, but everything that can be visualized using graphical
primitives. Thus, requirement R4 is met.

As mentioned in the previous section, smooth animation should be optional for the end-
user. Thus, our viewer includes the option for smooth animation to be toggled on or off. This
can be done using one of the viewer settings (arrow 4 in Figure 1). This was requirement R5.

Since the whole animation viewer is based on HTML, integration with hypertext is sim-
ple and natural. Static documentation can be provided outside the viewer. As Listing 1
showed, including Xaal animations in hypertext requires only a couple of lines of HTML and
JavaScript. There is also another method of including hypertext when using Xaal animations;
each step in the animation is allowed to include a description that can be arbitrary XHTML.
Documentation added this way is shown in area labeled 5 in Figure 1. This documentation is
dynamic in nature, as it is different for every state of the animation. The only unsupported
type of documentation mentioned in the requirements (R6) is dynamic documentation based
on user’s experience.

Requiring users to respond to questions during the animation was another requirement
for an AA viewer (R7). Currently, the viewer supports some typical question types such as
true/false questions and multiple choice questions. Since Xaal has no way to specify ques-
tions, we have implemented support for the question specification of the GaigsXML algorithm
animation language (Naps et al., 2006). For the final version of this paper we will implement
questions where the user can provide the answer by selecting graphical objects in the visual-
ization. To connect to a database to submit the students’ responses, AJAX (or, Asynchronous
JavaScript And XML) calls can be made. Thus, requirement R8 is easy to implement on the
client-side. However, it requires some interface on the server side which we haven’t considered.

Allowing users to specify their own input was requirement R9. Again, since we are working
with HTML and JavaScript, allowing users to specify their own input data for the viewer is
extremely simple in cases where the animation is using data structures. This is because any
scripts included in the HTML document can interact with the animation viewer. For example,
Listing 3 gives an example how to add a textfield to an HTML page that adds the user-given
data into the binary search tree in the animation.

1 <input id="insValue" type="text"></input>
2 <button id="insButton">Insert</button>
3 ...
4 <script type="text/javascript">
5 Event.observe($(’insButton’), ’click’, function() {
6 var bst = viewer.dsStore.get("bst");
7 bst.insert($(’insValue’).value);
8 bst.draw(viewer.renderer);
9 </script>

Listing 3: Example of allowing user input for algorithms.

4.1 Underlying Technologies

The implementation of the viewer is based on some JavaScript libraries. The lowest level of
these libraries is Prototype2, which offers, for example, Ajax support as well as advanced fea-
tures for dynamically manipulating the client-side HTML. The visualizations are drawn using
Prototype Graphic Framework (PGF)3, a Prototype-based framework that allows drawing ar-
bitrary data on various browsers. PGF supports multiple rendering technologies for different
browsers: Scalable Vector Graphics (SVG), HTML Canvas element, and Vector Markup Lan-
guage (VML). These different renderers can be used through one programming interface. The

2http://www.prototypejs.org
3http://prototype-graphic.xilinus.com/

42 Fifth Program Visualization Workshop

animation features in our viewer use Scriptaculous4, a Prototype-based animation framework.
The animation is achieved by extending Scriptaculous’s effects to modify graphical objects
drawn using PGF.

When discussing web applications, the size of the files and the loading time are essential.
Table 4.1 shows the load times and file sizes of the different components used to implement
the Xaal viewer. The total size is slightly over 400 kilobytes. This size can be reduced by
minimizing and compressing the files.

Table 1: Load times and file sizes of the different components needed for the viewer.
Component Load time (in ms) Size (in kb)

Prototype 107 124.1
Scriptaculous 177 124.7
Prototype Graphic Framework 72 88.7
Xaal viewer 48 64.7

Total 404 402.2

5 Discussion

The viewer supports the Xaal specification only partially. At the moment of writing, all the
graphical primitives are supported. Of the data structures, only tree is currently implemented.
However, for the final version of this paper, we hope to have a more complete implementation
of the Xaal specification.

Some of the requirements are not implemented at this point. The support for constructing
level of engagement should be added (R11). This could be done by, for example, adding visual
algorithm simulation capabilities like in TRAKLA2 (Malmi et al., 2004) to the viewer.

Some user interface components should be added as well. These include the options
to change the speed and magnification of the visualization (R3) as well as visualizing the
algorithm’s structure (R10). All these could be implemented with reasonable effort.

Connecting to a database to course management facilities (R8) can be done using AJAX
calls. This, however, requires server-side support as well. An interesting new technology that
could make implementing this quite simple, is Aptana Jaxer5. Jaxer is an AJAX server that
allows running the same JavaScript code and manipulating the same DOM both on server-side
and client-side.

There are still some problems unsolved. First, platform specific problems do arise, al-
though the JavaScript libraries make writing browser independent code a lot easier. Cur-
rently, the implementation has been used in Firefox, Safari, Opera, and SeaMonkey but does
not work in Internet Explorer. However, there should not be any major impediments in
fixing this in IE. In addition, using JavaScript libraries other than Prototype in the HTML
document can cause problems. However, this is not usual in current learning environments.
Another problem is that due to the nature of JavaScript, all the source code is available to
the student. Thus, any client-side assessment results cannot be trusted if such a system is to
be used in evaluating students.

5.1 Alternative RIA Technologies

When building rich internet applications, JavaScript is not the only choice. In fact, there is
an increasing number of promising technologies available. The discussion of all of these is
not possible in the scope of this paper. However, the following mentions some of the most
potential candidates.

4http://script.aculo.us
5http://www.aptana.com/jaxer

Fifth Program Visualization Workshop 43

Adobe’s Flash and Flex provide technology for building cross-platform RIAs. The tools
for developing applications are quite sophisticated and powerful. However, the tools are
commercial software products developed by Adobe. Another rising technology is Microsoft
Silverlight, which uses a lot of the same technologies as the .NET framework making it suitable
for developers familiar with .NET. However, Silverlight is not cross-platform compatible.
Finally, we mention JavaFX, a family of products from Sun Microsystems based on Java
technology. However, this technology is not ready for production use at the moment. On a
positive side, Sun plans on releasing parts of the JavaFX family as open source.

So, why did we choose the JavaScript road? First, by using JavasScript we do not de-
pend on software provided by any corporation but are using open source libraries. Second,
JavaScript works on all platforms without any plugins, whereas, for example, Silverlight is
not available on Linux at the time of writing. In addition, our approach can use any server
side components. Finally and most importantly, for the JavaScript approach, the technology
is mature, widely used, and supported by an ever-growing number of useful libraries.

6 Conclusions and Future Research

In this article, we have introduced a solution for using algorithm animations in hypertext
online material. Our solution is a pure HTML and JavaScript implementation of an algorithm
animation viewer that fulfills most of the requirements for an AV system. In the future, we
hope to be able to use this system in actual material used by learners. At this point, we are
not aware of any similar systems being implemented and we see this as an important step
towards the seamless merging of AV and hypertext called for by the ITiCSE 2006 working
group.

There are naturally many more possible features that could be implemented. Implementing
the rest of the requirements and to support the complete Xaal specification are high on our
wish list. However, the nature of HTML and JavaScript offers some unusual possibilities. The
following is a list of the most interesting future development ideas.

• In the current version, there is already support for drawing annotations on the anima-
tion. In the future, we could store these annotations and then later show them for the
same student, or even share the annotations between students.

• We could support opening animations in different formats directly in the browser.

• Due to the nature of JavaScript, replacing functions on the fly is trivial. This would
allow creation of automatically assessed exercises where the student is required to code
some algorithm using the data structures in the viewed animation.

• The current solution requires internet access if used in evaluation. However, with cutting
edge technologies like Google Gears or Dojo.Offline, offline usage of animations where
assessment/results are submitted when the student is online, could be developed.

References

S. Diehl. Software visualization: Visualizing the Structure, Behaviour, and Evolution of Soft-
ware. Springer New York, 2007.

Christopher D. Hundhausen, Sarah A. Douglas, and John T. Stasko. A meta-study of al-
gorithm visualization effectiveness. Journal of Visual Languages and Computing, 13(3):
259–290, June 2002.

Ville Karavirta. Facilitating Algorithm Animation Creation and Adoption in Education. Li-
centiate’s thesis, Helsinki University of Technology, December 2007. Available online at
http://www.cs.hut.fi/Research/SVG/publications/karavirta-lis.pdf.

44 Fifth Program Visualization Workshop

Lauri Malmi, Ville Karavirta, Ari Korhonen, Jussi Nikander, Otto Seppälä, and Panu Sil-
vasti. Visual algorithm simulation exercise system with automatic assessment: TRAKLA2.
Informatics in Education, 3(2):267–288, 2004.

Andres Moreno, Niko Myller, Erkki Sutinen, and Mordechai Ben-Ari. Visualizing programs
with Jeliot 3. In Proceedings of the International Working Conference on Advanced Visual
Interfaces, pages 373 – 376, Gallipoli (Lecce), Italy, May 2004.

Thomas Naps, Myles McNally, and Scott Grissom. Realizing XML driven algorithm visu-
alization. In Proceedings of the Fourth Program Visualization Workshop, pages 129–135,
2006.

Thomas L. Naps. JHAVÉ: Supporting Algorithm Visualization. Computer Graphics and
Applications, IEEE, 25(5):49–55, 2005.

Thomas L. Naps, Guido Rößling, Vicki Almstrum, Wanda Dann, Rudolf Fleischer, Chris
Hundhausen, Ari Korhonen, Lauri Malmi, Myles McNally, Susan Rodgers, and J. Ángel
Velázquez-Iturbide. Exploring the role of visualization and engagement in computer science
education. SIGCSE Bulletin, 35(2):131–152, June 2003a.

Thomas L. Naps, Guido Rößling, Jay Anderson, Stephen Cooper, Wanda Dann, Rudolf Fleis-
cher, Boris Koldehofe, Ari Korhonen, Marja Kuittinen, Charles Leska, Lauri Malmi, Myles
McNally, Jarmo Rantakokko, and Rockford J. Ross. Evaluating the educational impact of
visualization. SIGCSE Bulletin, 35(4):124–136, December 2003b.

Thomas L. Naps, Guido Rößling, Peter Brusilovsky, John English, Duane Jarc, Ville Kar-
avirta, Charles Leska, Myles McNally, Andrés Moreno, Rockford J. Ross, and Jaime
Urquiza-Fuentes. Development of XML-based tools to support user interaction with al-
gorithm visualization. SIGCSE Bulletin, 37(4):123–138, December 2005. doi: http:
//doi.acm.org/10.1145/1113847.1113891.

Cristóbal Pareja-Flores, Jamie Urquiza-Fuentes, and J. Ángel Velázquez-Iturbide. WinHIPE:
an ide for functional programming based on rewriting and visualization. ACM SIGPLAN
Notices, 42(3):14–23, 2007. doi: http://doi.acm.org/10.1145/1273039.1273042.

Rockford J. Ross and Michael T. Grinder. Hypertextbooks: Animated, active learning, com-
prehensive teaching and learning resource for the web. In Stephan Diehl, editor, Software
Visualization: International Seminar, pages 269–283, Dagstuhl, Germany, 2002. Springer.

Guido Rößling and Bernd Freisleben. ANIMAL: A system for supporting multiple roles in
algorithm animation. Journal of Visual Languages and Computing, 13(3):341–354, 2002.

Guido Rößling and Thomas L. Naps. Towards intelligent tutoring in algorithm visualization. In
Second International Program Visualization Workshop, pages 125–130, Aarhus, Denmark,
2002a.

Guido Rößling and Thomas L. Naps. A testbed for pedagogical requirements in algorithm
visualizations. In Proceedings of the 7th Annual SIGCSE/SIGCUE Conference on Inno-
vation and Technology in Computer Science Education, ITiCSE’02, pages 96–100, Aarhus,
Denmark, 2002b. ACM Press, New York.

Guido Rößling, Thomas Naps, Mark S. Hall, Ville Karavirta, Andreas Kerren, Charles Leska,
Andrés Moreno, Rainer Oechsle, Susan H. Rodger, Jaime Urquiza-Fuentes, and J. Ángel
Velázquez-Iturbide. Merging interactive visualizations with hypertextbooks and course
management. SIGCSE Bulletin, 38(4):166–181, 2006.

Fifth Program Visualization Workshop 45

Integrating test generation functionality into the Teaching
Machine environment

Michael Bruce-Lockhart, Theodore Norvell
Computer Engineering Research Labs

Faculty of Engineering and Applied Science
Memorial University of Newfoundland

St. John’s, NF, Canada A1B 3X5

Pierluigi Crescenzi
Dipartimento di Sistemi e Informatica

Università degli Studi di Firenze
Viale Morgagni 65, 50134 Firenze, Italy

mpbl@engr.mun.ca, theo@mun.ca, piluc@dsi.unifi.it

Abstract

In this paper we introduce an extension of the Teaching Machine project, called Quiz
Generator, that allows instructors to produce assessment quizzes for courses in algorithms
and data structures quite easily. This extension makes use of visualization techniques and
is based on a new feature of the Teaching Machine that allows third-party visualizers to
be added as plugins. In essence Quiz Generator builds on new scripting capabilities for
both the Teaching Machine and the WebWriter++ authoring system. Using these new
capabilities, several question types have already been produced.

1 Introduction

Allowing students to test their knowledge in an autonomous and automatic way is certainly one
of the most important topics within computer science education and distance learning. Indeed,
many systems have been proposed in the literature for automatic assessment of exercises on
programming (e.g. Vihtonen and Ageenko (2002); Ala-Mutka (2005)), algorithm and data
structures (e.g. Malmi et al. (2004); Laakso et al. (2005)), and object-oriented design (e.g.
Higgins et al. (2002)). Two of the most important features that these systems should exhibit
are, from the teacher point of view, ease of use and, from the student point of view, the
possibility of replicating the same kind of test with different data. In this paper, we focus our
attention on the automatic generation of assessment quizzes in the field of algorithm and data
structures and on the use of visualization techniques in generating quizzes (Cooper, 2007).

In order to keep the level of difficulty encountered by the teacher while generating a new
kind of test reasonably low, we decided to avoid tests based on the manipulation of a data
structure, such as the ones described in (Krebs et al., 2005): nonetheless, we think that the
coverage of test types proposed in the following section is quite wide.

Our basic approach is to add test generation functionality to the existing Teaching Machine
(Bruce-Lockhart and Norvell, 2007; Bruce-Lockhart et al., 2007) and WebWriter++ (Bruce-
Lockhart and Norvell, 2006) environment. The Teaching Machine is a tool for visualizing
how Java or C++ code runs on a computer. It contains compilers for both languages and
an interpreted run-time environment that provides a high-level object model for the state
of its virtual machine. This object model is accessed by a number of standard visualizers
that present the state graphically to the user. Recently we extended the Teachine Machine
to allow third-party visualizer to be added as plugins. The Teaching Machine is written in
Java and may be run as an applet or as an application. WebWriter++ is a small authoring
system written in JavaScript whose purpose is to allow authors of pedagogical web pages to
focus on content rather than technology. It interfaces with the Teaching Machine as well as
providing a number of other automated facilities such as displaying colour stained code in a
visual container with buttons to run it or edit it or run a video about it.

46 Fifth Program Visualization Workshop

Figure 1: The first and second test types: predicting a data structure state (left) and
determining the data structure or the algorithm (right)

1.1 Test types

Our system features the following kinds of tests:

• Given an input, determine the state S of a data structure after the input elaboration
and/or the algorithm execution: for example, given a sequence of integers, the student
is asked to derive the state S of a heap, after all the integers have been inserted (see left
part of Figure 1). In this case, a visualizer plugin is used during the assessment phase
in order to show the correct answer to the student.

• Given an input and the state S of a data structure, determine which kind of data
structure and/or which algorithm has been used in order to produce the state S after
the (partial) input elaboration: for example, given a sequence of integers and given a
partially sorted array, the student is asked to determine which sorting algorithm has
been applied in order to produce the partially sorted array starting from the initial
sequence of integers (see right part of Figure 1). In this case, a visualizer plugin is used
in order to produce the visualization of the state of the data structure.

• Given a set of different inputs and the state S of a data structure, determine which
input has been elaborated by the data structure and/or the algorithm in order to reach

Figure 2: The third test type: determining the input

Fifth Program Visualization Workshop 47

Figure 3: The fourth test type: determining the input

the state S: for example, given a set of sequences of integers and given a heap H, the
student is asked to determine which sequence produces the heap H after all the integers
of the sequence have been inserted (see Figure 2). Again, a visualizer plugin is used to
produce the visualization of the state of the data structure.

• Given an input and a set of states of different data structures, determine which kind
of data structures and/or algorithms have been used in order to elaborate the input:
for example, given a sequence of integers and given three partially sorted arrays, the
student is asked to determine which sorting algorithm (among a specified set) produces
each of the three arrays (see Figure 3). In this case, the visualizer plugin is used several
times in order to produce the visualizations of the states of the data structures.

Clearly, creating new test types depends quite heavily on the availabilty of specialized visu-
alizers as well as the development of a means to capture their outputs at specific points.

1.2 Structure of the paper

In the next section, we briefly describe the Teaching Machine and WebWriter++ extension,
which has been produced in order to develop the Quiz Generator framework: this extension
mainly consists of a new plugin architecture and an enhanced scripting capability. In Sections 3
and 3.1, we describe a test example and how the new features of the Teaching Machine and
the WebWriter++ tools allow the system to visualize and assess the test. We conclude in
Section 5 by listing some research questions concerning the possibility of using Quiz Generator
as a testing tool, and not only as a self-assessment tool.

2 System software architecture

The Quiz Generator project is an extension of the Teaching Machine project. As such it
extends the two primary tools of this latter project — the Teaching Machine, which is a
programming animation tool written in Java, and WebWriter++, which is a JavaScript library
for authoring interactive web pages for learning programming.

2.1 Visualization plugins

In particular, Quiz Generator leverages a rewrite of the Teaching Machine carried out in
2006-2007 which permitted the incorporation of third party visualizer plugins for the Teach-

48 Fifth Program Visualization Workshop

ing Machine. This allows instructors to develop their own visualizers without touching, or
even recompiling, the Teaching Machine core. While plugins are not confined to visualizers,
we believed visualizers would be an important need. The objective is to allow experienced
developers to create new visualizers in a matter of between one and three days of program-
ming. Indeed, it was the availability of this capability that got us thinking about developing
a quiz generator capability in the first place.

An important goal for our system is to allow the instructor to produce a test quite easily.
The kinds of tests proposed require a number of different visualizer plugins which, even at only
a day or two apiece, can require significant time to develop. Nevertheless, such development
cannot be charged against test development as it would be unreasonable to present students
with a visualization on a quiz that they had not seen in the course. Thus, for the purposes
of this exercise, we assume that appropriate visualization plugins already exist and have been
used in the course.

2.2 Scripting the Teaching Machine

Easy production also means a teacher should be able to produce a test without modifying the
implementation of a data structure and/or of an algorithm. For example, if we refer to the
first test type example and if we assume that the teacher has already programmed a Java or
C++ class implementing a heap, then the test can be deployed without modifying this code
by simply inserting a few scripting commands in the Java or C++ code, as comments, and
by inserting a few JavaScript commands within the test web page.

The communication between the host web-page, the Teaching Machine, and the subject
(Java or C++) code goes as follows.

1. A JavaScript command within the web page initiate the compilation and execution of
the Java or C++ code within the Teaching Machine.

2. As the Java or C++ code executes in the Teaching Machine, scripts embedded as com-
ments in the code command the Teaching Machine to produce images representing the
state of one or more data structures.

3. Once the Teaching Machine has finished executing, JavaScript commands within the web
page collect the images and send them to applets (called portholes) embedded within
the question text.

This approach builds on earlier work with interactive learning pages which utilizes the
connection between the WebWriter++ authoring tool and the Teaching Machine.

What was needed for the Quiz Generator project was a richer set of embedded scripting
controls for the Teaching Machine than we had had in WebWriter++. For example, our
learning web pages can currently display a code fragment for discussion, then allow a student
to launch the example in the Teaching Machine to run it for herself, to edit it, or to possibly
watch a video about it. Creating quizzes is more demanding.

3 A sample quiz

Here we expand in more detail the example given for the second type of test described in
Section 1.1 (see right part of Figure 1). Ideally, a student would be presented with a visu-
alization of an unsorted array, randomly populated according to parameters laid out by the
instructor. A second snapshot of the array is presented after a partial sort, together with a
list of algorithms. The student is told how many sorting passes were done and asked to check
all algorithms that could have created the second snapshot.

Again, it is assumed that both the appropriate visualization plugins and an implementation
of the sorting code and data structure already exist and have been used in the course.

Fifth Program Visualization Workshop 49

External scripting commands

Command Effect Status
run(filename) Loads filename into the Teaching Machine

and waits at 1st line
Pre-existing

autoRun(filename) Loads filename into Teaching Machine and
runs it invisibly

Built

insertPorthole(name) Create a container in the quiz for a snapshot Built
putSnaps() Load all snapshots from the Teaching Ma-

chine into portholes
Built

addCLArg(arg) Add a command line argument for the pro-
gram to be run in Teaching Machine

Built

Internal scripting commands

Command Effect Status
relay(id, call) Relay function call to plugin id Built
snapshot(id, name) Take a snapshot of plugin id for porthole

name
Built

stopAuto() Stop execution at this point Built
breakPoint(id) Create backup point id here Planned
backup(id) Backup Teaching Machine to point id Planned
makeRef(id) Use the data structure in plugin id as a ref-

erence for comparison
Built

compare(id) Compare data structure in plugin id to the
reference data structure

Built

returnResults Ship snapshot results back to quiz script Built

Table 1: Scripting commands

To create the quiz, the instructor first instruments the code with testing parameters, for
example:

1. The size of the array (or a range of sizes, from which one size would be randomly picked).

2. The value range desired for random population of the array.

3. The sorting algorithm to be used.

4. The number of sorting passes (or, again, a permissable range).

The code (or really code sets, since different pieces of code are required for different
topics) and the visualizations would form a resource base for creating actual quizzes. The
quizzes themselves are created in HTML (or XHTML) using QuizWriter++, an extension to
WebWriter++.

3.1 Scripting from inside and outside

Let us first consider the following simpler quiz question: given an unsorted array A and a
snapshot of A after a specific sorting algorithm has been partially applied, the student is
asked to determine how many sorting steps have been executed. In terms of controlling the
Teaching Machine, this question is quite limited. We need to:

1. Load the appropriate code into the Teaching Machine.

2. Pass it some parameters, such as the size of the array, the selection of the bubble sort
implementation and the number of sorting steps.

50 Fifth Program Visualization Workshop

3. Start up the Teaching Machine to run invisibly (so the student cannot inspect it).

4. Specify the visualizer and the data whose pictures we want.

5. Have the Teaching Machine stop after it has executed the requisite number of sorting
steps.

6. Recover the two snapshots (before and after) from the visualizer.

Nevertheless, it requires far more detailed control of the Teaching Machine than we have
ever exercised before, for example the requirement to run it invisibly and pass it parameters.
Such control was done previously by simple scripting from WebWriter++ generated pages.
Once the Teaching Machine applet was loaded, JavaScript calls could readily invoke Teaching
Machine applet functions. QuizWriter++ simply extends this capability by adding new func-
tionality both to the Teaching Machine and to the scripts, for example creating an autorun
mode in the Teaching Machine (previously it had always been run manually, like a debugger),
and allowing the passing of arguments from a script.

That alone is not enough, however. We found it was also convenient to control the Teach-
ing Machine from within the running code, that is, to allow the example running to issue
commands directly to the Teaching Machine (such as when to halt or when to drop a snap-
shot). In essence, it was necessary to develop a second scripting capability. To distinguish
between them we call scripting from the JavaScript on the quiz page external scripting and
scripting from with the running code internal scripting. Table 1 shows a number of potential
scripting calls as well as their current status.

The quiz questions of Figures 1-3 were produced by using the capabilities of Table 1 that
are already built. For example, to engage fully the question posed at the beginning of Section 3
would require something like the following:

1. Load the appropriate code into the Teaching Machine.

2. Pass it some parameters, such as the size of the array, the selection of the bubble sort
implementation and the number of sorting steps.

3. Start up the Teaching Machine to run invisibly (so the student cannot inspect it).

4. Specify the visualizer and the data whose pictures we want.

5. Have the Teaching Machine stop after it has executed the requisite number of sorting
steps and take a snapshot.

6. Back the Teaching Machine up and rerun it on every other sorting algorithm specified.

7. For each algorithm, have the visualizer compare the state of the array after the reference
algorithm to the state of the array after the current sort.

8. Recover the two snapshots (before and after) from the visualizer.

9. Recover data specifying algorithms that produced equivalent sorts.

The scripting calls in Table 1 were arrived at by examining just such quiz scenarios.

4 Related work

This paper fits into the third level (that is, the responding level) of the learner engagement
taxonomy presented in Naps et al. (2002). As stated in the introduction, it tries to avoid
some of the impediments listed in Naps et al. (2003) and faced by instructors, while adopting
visualization techniques, by making as easy as possible the development of new quizzes and by
integrating them within a unified framework, such as the one provided by WebWriter++ and

Fifth Program Visualization Workshop 51

the Teaching Machine (By the way, Naps et al. (2002) and Naps et al. (2003) provide a good
background for the research and development described in this paper, as well as test settings
for evaluation). Other papers deal with the development of interactive prediction facilities
such as Jarc et al. (2000) and Naps et al. (2000), where web-based tools are presented and
evaluated, and Rößling and Häußge (2004), where a tool-independent approach is described.

5 A work in progress

By constructing and examining quiz scenarios we are currently refining what capabilities we
need in order to be able to achieve the kinds of quizzes laid out in Section 1.1. Nevertheless, the
existing capabilities already span almost the entire space of controls needed, in the sense that
they require almost all the structural extensions to the Teaching Machine that are needed. The
additional scripting mostly requires the addition of new functions rather than fundamental
changes to the Teaching Machine structure.

5.1 Research questions

Indeed, we are quite excited to have come this far. In the early days of scripting development it
was by no means always certain that we would be able to achieve all our objectives. Now that
the design space is largely spanned we can focus on the development of the extra functionality
required. Once that is done, it will allow us to concentrate on the research questions that are
at the core to the whole endeavour of automated testing:

1. Given a space of possible questions an instructor might want to ask in data structures
and algorithms, can we build a quiz generator that does a reasonable job of spanning
that space? That is, can an instructor use it to examine most of the issues he might
want?

2. Even if we are successful in 1, can we produce enough variations in questions for the
tool to be useful over a large number of uses? That is, can we produce enough different
quizzes?

3. If we are succesful in 2, can we produce a set of quizzes that are reasonably equivalent?
That is, would students taking different quizzes from each other perceive that they had
been treated fairly?

The last question, of course, moves beyond the realm of self-testing into the more vexing
issue of testing for credit. That brings up a whole set of important issues such as quiz security
and the proper gathering of quiz data. Nevertheless, until these three primary questions can
be answered positively, there is no point in embarking upon these other issues. We are very
hopeful that our current approach will be sufficiently successful to require these other issues
to be tackled in the future.

References

K. Ala-Mutka. A survey of automated assessment approaches for programming assignments.
Computer Science Education, 15(2):83–102, 2005.

M. Bruce-Lockhart and T. S. Norvell. Interactive embedded examples: a demonstration.
SIGCSE Bulletin, 38(3):357–357, 2006.

Michael P. Bruce-Lockhart and Theodore S. Norvell. Developing mental models of computer
programming interactively via the web. In Frontiers in Education Conference - Global
Engineering: Knowledge without Borders, Opportunities without Passports, pages 3–8, 2007.

52 Fifth Program Visualization Workshop

Michael P. Bruce-Lockhart, Theodore S. Norvell, and Yiannis Cotronis. Program and algo-
rithm visualization in engineering and physics. Electronic Notes in Theoretical Computer
Science, 178:111–119, 2007.

M.L. Cooper. Algorithm visualization: The state of the field. Master thesis at Virginia
Polytechnic Institute and State University, 2007.

C. Higgins, P. Symeonidis, and A. Tsintsifas. The marking system for coursemaster. In Proc.
7th Annual Conference on Innovation and Technology in Computer Science Education,
pages 46–50, 2002.

D. J. Jarc, M. B. Feldman, and R. S. Heller. Assessing the benefits of interactive prediction
using web-based algorithm animation courseware. SIGCSE Bull., 32(1):377–381, 2000.

M. Krebs, T. Lauer, T. Ottmann, and S. Trahasch. Student-built algorithm visualizations for
assessment: flexible generation, feedback and grading. In Proc. 10th Annual Conference on
Innovation and Technology in Computer Science Education, pages 281–285, 2005.

M. Laakso, T. Salakoski, L. Grandell, X. Qiu, A. Korhonen, and L. Malmi. Multi-
perspective study of novice learners adopting the visual algorithm simulation exercise sys-
tem TRAKLA2. Informatics in Education, 4:49–68, 2005.

L. Malmi, V. Karavirta, A. Korhonen, J. Nikander, O. Seppälä, and Panu Sistali. Visual
algorithm simulation exercise system with automatic assessment: TRAKLA2. Informatics
in Education, 3:267–288, 2004.

T. Naps, S. Cooper, B. Koldehofe, C. Leska, G. Rößling, W. Dann, A. Korhonen, L. Malmi,
J. Rantakokko, R. J. Ross, J. Anderson, R. Fleischer, M. Kuittinen, and M. McNally.
Evaluating the educational impact of visualization. In Working Group Reports from 8th
Annual Conference on Innovation and Technology in Computer Science Education, pages
124–136, 2003.

T. L. Naps, J. R. Eagan, and L. L. Norton. JHAVÉ—an environment to actively engage
students in web-based algorithm visualizations. SIGCSE Bull., 32(1):109–113, 2000.

T. L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleischer, C. Hundhausen, A. Korhonen,
L. Malmi, M. McNally, S. Rodger, and J. Á. Velázquez-Iturbide. Exploring the role of
visualization and engagement in computer science education. In Working Group Reports
from 7th Annual Conference on Innovation and Technology in Computer Science Education,
pages 131–152, 2002.

G. Rößling and G. Häußge. Towards tool-independent interaction support. In Proc. 3rd
International Program Visualization Workshop, pages 110–117, 2004.

E. Vihtonen and E. Ageenko. VIOPE-computer supported environment for learning program-
ming languages. In Proc. Int. Symposium on Technologies of Information and Communi-
cation in Education for Engineering and Industry, pages 371–372, 2002.

Fifth Program Visualization Workshop 53

Kick-Start Activation to Novice Programming — A
Visualization-Based Approach

Essi Lahtinen, Tuukka Ahoniemi
Tampere University of Technology, Department of Software Systems

essi.lahtinen@tut.fi, tuukka.ahoniemi@tut.fi

Abstract

In the beginning of learning programming students have misconceptions of what pro-
gramming is. We have used a kick-start activation in the beginning of an introductory
programming course (CS1) to set the record straight. A kick-start activation means in-
troducing the deep structure of programming before the surface structure by making the
students solve a certain type of problem in the first lecture. The problem is related to a
realistic computer program, simple enough for everyone to understand and allow students
to participate in debugging. A visualization-based approach helps making the example
more concrete for students.

In this article we present the concept kick-start activation and one concrete example.
To support the example, we have also developed a visualization using the visualization
tool JHAVÉ. We got positive feedback on the example and suggest further development
of kick-start activations in order to make the beginning of learning programming more
motivating for students.

1 Introduction

Students who enroll to introductory programming courses (CS1) have plenty of misconceptions
about the nature of programming and some students do not know what programming is at
all. The course typically starts with the teacher trying to correct the misconceptions by
emphasizing that programming is more problem-solving and thinking than typing program
code. The concept of the algorithm is introduced, as well as some tools for implementing
algorithms and designing programs, such as pseudocode or flow charts.

A classical first example of an algorithm is a recipe in a cook-book. A recipe is a relatively
unambiguous, detailed set of instructions. If you follow the instructions carefully you will
have a food portion as the result. However, there are problems with this example. Firstly,
it is not at all related to computers. Thus students might feel that the teacher is stating the
obvious or even explaining nonsense when he/she is talking about cooking and algorithms.
Secondly, even though comparing cooking recipes and algorithms gives a clear idea on what an
algorithm is, it does not really help to understand what a programmer does. The underlying
idea of programming is not delivered to the students. Thirdly, the methaphor also does not
help in explaining the programming process for the student.

We introduce a different way to start the course: kick-start activation. In this approach,
we get into the deep structure of programming before the surface structure is even introduced.
Our target audience is especially the students who do not know anything about programming
before the kick-start activation. In this article we first present the idea of a kick-start activation
in Section 2. Then we introduce our example and explain how we use it in Section 3. Section
4 presents the visualization and feedback. Finally, discussion and conclusion are included in
Section 5.

2 Criteria for a Kick-Start Activation

In our opinion, to make the opening of the course interesting for students, one needs to get
directly into the real problems, i.e., a problem that requires an algorithmic solution. In the
case of programming this means skipping the surface structure, such as the syntax of the
programming language, and starting from the deep structure of programming, i.e., a problem

54 Fifth Program Visualization Workshop

that the students solve themself. We call this kind of an introduction kick-start activation
because it is a fast-forward jump-in approach and it engages students in the example since
they solve the problem.

Our main criterion for the example presented in the kick-start activation is that it has
to be based on a real computer program. The benefits of a real programming example are
that 1) in addition to introducing the concepts of algorithms, pseudo code and flow charts
one can also introduce problem solving and the phases of programming, the idea of testing
algorithms and programs, and show what the work of a programmer is like. 2) It helps to
explain the difference of human thinking and the way the computer works. 3) The execution
of the algorithm can be explained and demonstrated with a computer. 4) One can also show
an implementation in a programming language to give an example. Students can identify the
control structures of the pseudo code from the program code. 5) It can be concretized by a
program visualization that the students can run.

Our second criterion is that the kick-start activation needs to be simple enough so it can
be understood by everyone. Firstly, we decided that it has to be an example that relates
to everyday life. Secondly, we chose not to use a real programming language nor any terms,
pictures, or other details that relate to computers. For example, we did not want []-operators
in the algorithm or memory addresses in the pictures. These would just add extra details
that are irrelevant at this stage. Instead of using a programming language it is easier to
fade out the surface structure of programming by using a natural-language-like pseudo code
presentation and flow charts. To concretize the pseudo code and flow chart we developed a
visualization that illustrates how the algorithm would be run by a computer if the computer
could understand it.

The third criterion for a kick-start activation was to make students take part in the exam-
ple. As programming is much more thinking and problem-solving than using the programming
language syntax, there are numerous programming related activities that students can try al-
ready in the beginning of the course. For instance testing an algorithm is a task that can
be given to a student. One practical way of doing this is developing a buggy version of an
algorithm that the students can debug.

3 Our Example: Hyphenating Finnish Words

The topic of our kick-start activation was the hyphenation rules of the Finnish language.
Word processors have spell checking and automatic hyphenation, i.e., computer programs are
hyphenating Finnish words. In addition, every student knows how to spell1 so the topic is
general enough.

The exact rules for hyphenating Finnish are not common knowledge in Finland even if it is
easy to hyphenate Finnish for everyone who knows how to speak the language. Fortunately the
rules are simple enough to be explained to students in a few sentences. Still, it is non-trivial
to build a hyphenation algorithm. The algorithm requires a loop structure to go through the
letters of the hyphenated word and a couple of if-statements to choose which hyphenation
rule to apply.

For example, the first of three hyphenation rules called the consonant rule states the
following: if there is a vowel followed by one or more consonants, a hyphen is placed directly
before the last consonant. The window on the right hand side in Figure 1 presents the algorithm
based on the rules. The consonant rule can be identified in the marked area of the figure.

A word is a data structure that can be understood even without knowing the data type
string. A word can also be drawn like a line of alphabet building blocks (See the window on
the left hand side in Figure 1). Introducing the computer memory or other similar details for
the student is unnecessary. Drawing the data structure as a line of building blocks actually

1In this situation actually: in Finland every student knows how to spell Finnish.

Fifth Program Visualization Workshop 55

allows us to visualize the addition of a hyphen: a picture animation where a block with the
character ‘-’ slides and slips in between the blocks of the word.

On the lecture, our intention was to highlight that designing and testing the algorithm
with pen and paper is a big part of programming. To describe this clearly we used a three
step example: 1) First we quickly designed a hyphenation algorithm. Though it seemed to
be correct the hasty design had on purpose produced a buggy solution. 2) Then the students
tested the algorithm and hopefully found the error. After this we discussed how important it is
to understand the problem before you start designing the algorithm. 3) Finally, we explained
the hyphenation rules deeper for the students and designed a new algorithm properly. The
final result was a correctly working algorithm. The example included two algorithms. We call
these the premature algorithm (produced in step 1) and the mature algorithm (produced in
step 3).

The purpose of the testing phase was to activate the students. They were actually per-
forming a programming related task even if they thought they did not know any programming
yet. The idea is that the students can use the visualization to run and test the algorithm.
The testing could of course be done using only pen and paper, but the visualization is handy
in it. We gave a link to the visualization to the students for later use so that they could revise
the lecture using the visualization.

4 The Visualization

There are many program visualization tools available for presenting basic programming struc-
tures for novice programmers. These visualization tools work on program code level, so they
assume that the student already understands some programming language and thus are not
suitable for our target audience. There is also a visualization tool called RAPTOR (Giordano
and Carlisle, 2006) where the students can construct flow charts and the tool will visualize
them for the student. The RAPTOR flow charts are also close to the program code level, e.g.,
the tool shows the content of variables and arrays.

We needed a completely syntax-free common purpose visualization tool where we can write
the algorithm in a few Finnish sentences and draw the building blocks exactly according to
our needs. Thus, the existing program visualization tools did not suit our purposes. However,
in the field of algorithm visualizations there was one tool flexible enough: JHAVÉ (Naps
et al., 2000) and its Gaigs support class package. With a bit of imagination we were able to
use this algorithm visualization tool slightly unorthodoxically and produce the hyphenation
visualization.

The info screen of JHAVÉ’s execution window is normally used for showing algorithm
specific instructions written in HTML. The tool allows the use of images as a part of the
HTML page with the <image> tag. This feature let us implement the flow chart animation
with a set of fixed images. The images were then presented in the correct order by showing
a particular image in each state of the program. With the possibility of using HTML and
images in JHAVÉ, one could design many sorts of examples as the technical implementation
is limited solely to the creation of the images.

Using JHAVÉ, we implemented two different presentations of the hyphenation algorithm
visualization: a pseudo code view and a flow chart. Both of these presentations also contain
a window with the alphabet building block picture of the hyphenated word. Screen shots can
be seen in Figure 1 and Figure 2. There were two different algorithms that we visualized: the
premature and mature. Since there are two different presentations of both the algorithms we
actually had four different visualizations.

4.1 Student Engagement

According to research on the field of visualizations, student engagement is vital for learning
when a student uses visualization (Stasko and Hundhausen, 2004). Naps et al. (2003) present

56 Fifth Program Visualization Workshop

Figure 1: The flow chart version of the visualization.

a Visualization Engagement Taxonomy that describes six levels of learner engagement with
visualization technology. On top of the lowest level of existing engagement—Viewing—are
the more active levels: Responding and Changing an existing visualization and Constructing
and Presenting ones own visualization.

As the algorithm is given fixed in the hyphenation algorithm visualization, the student
engagement is enhanced by allowing the student to provide his/her own input word for the
algorithm. This corresponds to the level Change of the Visualization Engagement Taxonomy
(Naps et al., 2003). To attain the level Response also, the flow of the program is interrupted
with pop-up questions querying about the next behavior of the program.

4.2 Student Feedback

We evaluated the visualization with a quantitative survey after the lecture where we used
it. We handed in a questionnaire on paper for the students. We received altogether 113
responses. 71 of the respondents (63%) had no programming experience before the course.

The feedback was generally positive since 53% of the respondents said that the visualiza-
tion looked nice (agree or totally agree), 86% thought that is was useful for learning (agree
or totally agree), and only 5% thought that it disturbed the lecture (agree or totally agree).

We performed a crosstabulation and a χ2-test for some of the variables and found out
that the students with no earlier programming experience thought that the visualization was
more useful for learning than the students who had programmed before coming to the course.
This difference is statistically significant (p < 0, 05). The reason is also obvious: the students
with earlier programming experience already had an understanding on how algorithms and
flow charts work so they do not need the visualization for understanding the hyphenation

Fifth Program Visualization Workshop 57

Figure 2: The pseudo code version of the visualization with an activating pop-up question.

algorithm. This result shows that we managed to help the students who were the target
audience of the visualization.

After all, the most important feedback was that our students were listening to the hyphen-
ation example intensively on the lecture. Two teachers tried the example and both of them
could sense a notable difference in the lecture situation compared to the cook-book example.

5 Discussion and Conclusions

The kick-start activation received positive feedback both from the students and the teachers
who used it. We think that our approach was successful because the criteria were designed
carefully and there was a visualization tool that aided both presenting the example and
understanding it. This example could be used as a source of ideas for other topics to build
kick-start activations of.

There are not many program visualization tools available for our target audience—the
students who do not know anything about programming yet. In addition to our visualization
we have found a system called SICAS (Mendes et al., 2005) that could probably also be used
for presenting a kick-start activation. It is based on similar principles and allows students
to construct their own flow charts and visualize them. However, currently it is not used the
same way we used our visualization.

The conceptual framework of programming knowledge developed by McGill and Volet
(1997) suggests that in addition to syntactic and conceptual knowledge a programmer also
needs strategic knowledge of programming. Reports on the state of field show that visualiza-
tions are often used for only presenting programming concepts (Shaffer et al., 2007). The scope
of our visualization is more in the strategic knowledge since it focuses on the programming
phases: testing and design.

In the development of the visualization we also emphasized student engagement in the
levels of the Visualization Engagement Taxonomy (Naps et al., 2003). The visualization is
most activating when the student is guided to use it in the three step lesson we described in
Section 3. This requires either a teacher to explain the hyphenation problem and the need
for debugging the first version of the algorithm or the student to read this from the material
by himself. The idea of connecting a visualization to a certain study material is similar to
the one presented in an ITiCSE working group report about hypertextbooks (Rössling et al.,
2006). We think that the visualization of the mature version of the algorithm could also be

58 Fifth Program Visualization Workshop

used without the debugging phase just for presenting the concepts algorithm, pseudo code,
and flow chart. This way the example would be less challenging and the activation of the
student would be left only to the pop-up questions.

The best possibility for activating students would be to make them correct the bug or
build a completely new correct algorithm after finding the bug from the premature version of
the algorithm. This can, however, be very challenging for a novice student so we did not try
it. It would be an interesting future work idea to build a visualization tool where the student
could build the correct algorithm by modifying the flow chart. Another idea for future work
is that we could implement different kinds of premature algorithms. There could be easier
and more difficult bugs for the debugging task.

6 Acknowledgments

Special thanks to Prof. Thomas Naps (University of Wisconsin, Oshkosh) for his enormously
useful guidance with visualizations in common and help with the JHAVÉ visualization tool.
Nokia Foundation has partly funded this work.

References

John C. Giordano and Martin Carlisle. Toward a more effective visualization tool to teach
novice programmers. In SIGITE ‘06: Proceedings of the 7th conference on Information
technology education, pages 115–122, New York, NY, USA, 2006. ACM Press. ISBN 1-
59593-521-5. doi: http://doi.acm.org/10.1145/1168812.1168841.

T. McGill and S. Volet. A conceptual framework for analyzing students’ knowledge of pro-
gramming. Journal on research on Computing in Education, 29(3):276–297, 1997.

António José Mendes, Anabela Gomes, Micaela Esteves, Maria José Marcelino, Crescencio
Bravo, and Miguel Angel Redondo. Using simulation and collaboration in cs1 and cs2.
SIGCSE Bull., 37(3):193–197, 2005. ISSN 0097-8418. doi: http://doi.acm.org/10.1145/
1151954.1067499.

Thomas L. Naps, James R. Eagan, and Laura L. Norton. JHAVé - An environment to
actively engage students in web-based algorithm visualizations. ACM SIGCSE Bulletin ,
Proceedings of the thirty-first SIGCSE technical symposium on Computer science education
SIGCSE ‘00, 32(1):109–113, 2000.

T.L. Naps, G. Rössling, V. Almstrum, W. Dann, R. Fleischer, C. Hundhausen, A. Korhonen,
L. Malmi, M. McNally, S. Rodger, and J.A. Velazquez-Iturbide. Exploring the role of
visualization and engagement in computer science education. SIGCSE Bulletin, 35(2):131–
152, June 2003.

Guido Rössling, Thomas Naps, Mark S. Hall, Ville Karavirta, Andreas Kerren, Charles Leska,
Andrés Moreno, Rainer Oechsle, Susan H. Rodger, Jaime Urquiza-Fuentes, and J. Ángel
Velázquez-Iturbide. Merging interactive visualizations with hypertextbooks and course
management. In ITiCSE-WGR ‘06: Working group reports on ITiCSE on Innovation
and technology in computer science education, pages 166–181, New York, NY, USA, 2006.
ACM. ISBN 1-59593-603-3. doi: http://doi.acm.org/10.1145/1189215.1189184.

Clifford A. Shaffer, Matthew Cooper, and Stephen H. Edwards. Algorithm visualization: a
report on the state of the field. In SIGCSE ‘07: Proceedings of the 38th SIGCSE technical
symposium on Computer science education, pages 150–154, New York, NY, USA, 2007.
ACM. ISBN 1-59593-361-1. doi: http://doi.acm.org/10.1145/1227310.1227366.

John T. Stasko and Christopher D. Hundhausen. Algorithm Visualization. In Computer Sci-
ence Education Research, pages 199–228, The Netherlands, Lisse, 2004. Taylor and Francis.

Fifth Program Visualization Workshop 59

Experiences on Using TRAKLA2 to Teach Spatial Data
Algorithms

Jussi Nikander, Juha Helminen, Ari Korhonen
Helsinki University of Technology

Department of Computer Science and Engineering

{jtn, jhhelmi2, archie}@cs.hut.fi

Abstract

This paper reports on the results of a two year project in which visual algorithm
simulation exercises were developed for a spatial data algorithms course. The success
of the project is studied from several point of views, i.e., from developer’s, teachers’s,
and student’s perspective. The amount of work, learning outcomes, and feasibility of the
system has been estimated based on the data gathered during the project. The results are
encouraging, which motivates to extend the concept also for other courses in the future.

1 Introduction

Spatial data algoritms (SDA) are algorithms that work on location data, such as geographic
data. These algorithms are an integral parth of geoinformatics, a branch of science where
information technology is applied to cartography and geosciences. Since geoinformatics often
uses a lot of illustrations, such as maps and other diagrams, the students are well acquainted
with visualization. Thus, software visualization is a natural tool for teaching SDA and its
applications to geoscientists.

Tracing exercises are a teaching method employed by many instructors in which the stu-
dents trace an algorithm by keeping track of the changes in data structures while stepping
through the algorithm. In visual algorithm simulation exercises, this procedure is supported
by a graphical learning environment that provides visualizations, which eliminates the burden
of drawing the same data structure over and over again. TRAKLA2 is a learning environment
that utilizes visual algorithm simulation to deliver tracing exercises to students. The system
can automatically assess the solutions and give feedback on the correctness of the simulation.

Previous studies (Korhonen et al., 2002; Laakso et al., 2005) have shown that there are no
differences in the learning results between a test group that solves visual algorithm simulation
exercises on the web and a control group that solves tracing exercises in a classroom as long
as the assignments are the same. This is an encouraging result that motivated us to apply
visual algorithm simulation exercises for spatial data algorithms. The challenge was to extend
the TRAKLA2 system to cover a new area of algorithmics. The main research question was
whether applying the visual algorithm simulation concept to new application areas is worth
the effort spent on extending the framework. This question has three separate aspects: the
developer’s, teacher’s and student’s point of views. From the developer’s perspective, we are
trying to find out under what circumstances this kind of project pays off. In particular, how
much time and effort does it take to extend the system to cover a new application area? And,
what kind of challenges we expect to encounter during implementation and in the design of
new visualizations? From the teacher’s point of view, we are interested in the learning results:
the level of learner engagement (i.e., how much work they did) and the overall performance
in the final examination (i.e., the correlation between the exercises and the achieved learning
results). Finally, from the student’s point of view, by interviewing them, we seek to find out
how this new technology affects the learning process.

After the implementation (i.e., extending the application framework and implementing the
exercises) the use of the system requires only minimal effort. Thus, this research aims not to
answer whether somebody should repeat our experiment, but to answer whether the concept
of visual algorithm simulation exercises is mature enough to be applied to other disciplines

60 Fifth Program Visualization Workshop

than data structures and algorithms. The main challenge is that it requires the instructor to
be proactive rather than reactive, that is, the workload is much higher before the course than
in traditional teaching in which the work (grading the exercises) is done during or after the
course. This might explain the slow adoption of such systems in every day teaching.

In this paper, we report the results on our experiences from a two year project in which
we implemented spatial TRAKLA2 exercises. Overall, taking into account that this was
partially a research project and partially a course development project, it was a success.
However, from a single instructor’s point of view, two years appears to be too short a time to
reap the benefits of automatic assessment, unless the system is used on a large course with
hundreds of students. Furthermore, student feedback suggests that they want more visual
algorithm simulation exercises on the course.

2 Spatial Extension to TRAKLA2

TRAKLA2 is a framework for automatically assessed visual algorithm simulation exercises.
The system is built on the concept of visual algorithm simulation. The user can construct
animations of algorithm execution via GUI actions such as dragging and dropping data items.
In the exercises, students can freely step backward and forward in these animations. They can
also reset the exercise and get new randomly generated input. A model answer is also available
as an animation. The exercises are deployed as Java applets within a web environment.
Figure 1 shows a screenshot of the TRAKLA2 environment.

Figure 1: TRAKLA2 exercise for the Douglas-Peucker line simplification.

The SDA extension to TRAKLA2 consists of three major components: spatial primitives,
spatial data structures and spatial data visualization. In addition, implementations of ge-
ometric functions and algorithms for processing spatial data and generating random input
for the algorithms are required. For now, the extension is limited to 2-dimensional data and
exercises.

The primitives on which the spatial data structures and algorithms operate are geometric
entities, such as points, lines, and polygons. This multidimensional data can be stored in the
form of key values derived from their geometric properties. In this respect, a spatial data
element is an ordered list of values, a tuple, which in the spatial context represents a specific
geometric entity. For example, a polygon can be stored as an ordered list of the coordinates
of its vertices.

In previously existing TRAKLA2 exercises, the data is 1-dimensional, single-letter char-
acters and integers. Their relationships are simple, and obvious without any additional vi-
sualization. The SDA extension introduces two new visualizations for use with spatial data.

Fifth Program Visualization Workshop 61

First, the tuple representation of a spatial primitive can be visualized in simple and exact tab-
ular form. Despite being precise, this data-intensive approach does a poor job of conveying
the geometric nature of and the relationships between the data elements. Thus, a different
visualization is needed to illustrate the spatial attributes. This is the area visualization, which
is fundamentally a 2-dimensional coordinate plane, onto which the geometric entities of the
spatial primitives are drawn (Nikander and Helminen, 2007).

Furthermore, spatial data is represented at three different levels of visualization. First,
at the exact data item level, the data is shown as tuples of values based on their geometric
properties. Second, at the data structure level, we have canonical visualizations specific to
the data structures, where spatial data items are labeled with unique identifiers or shown as
tuples. At the highest level of abstraction, the conceptual relationships and spatial attributes
are illustrated with the area visualization showing the data items and the structure with
possibly additional visual cues to represent algorithm constructs, such as a sweep line or an
in-circle test. Figure 2 depicts two visualizations of the same R-tree containing polygons.
The area visualization shows the areas covered by the polygons and tree nodes. The tree
visualization shows how the tree is organized.

Figure 2: R-tree a) drawn as an area and b) drawn as a tree.

A particular challenge with the SDA exercises is the generation of spatial data for use
as input to the algorithms. For the visualization to contribute to learning, the generated
data sets must be clear and visually pleasing. There has to be enough spacing between the
geometric entities to distinguish and select them. Also, labels must not overlap too much. In
addition, each exercise has very specific constraints for the data, which makes it hard to create
a generic data source. Therefore, most exercises have their own mechanism for generating data
such as simple polygons.

Currently, the SDA extension comprises 12 visual algorithm simulation exercises. All of
the exercises can be found on our web site1. The exercises fall into two categories: tracing
exercises and open tracing exercises (Korhonen and Malmi, 2004). In tracing exercises, an
algorithm and its input is given, and the student’s task is to work out the output and construct
an animation of the algorithm’s progress by simulating it step-by-step. The simulation is done
by emulating the algorithm’s operations by dragging, dropping and selecting data items, as
well as invoking operations via other GUI components, such as buttons. The user-created
animation is then compared against a correct sequence of states created by an actual execution
of the algorithm, and graded based on the number of matching steps. The goal is to give a
conceptual understanding of the algorithm.

In open tracing exercises, the algorithm is not strictly specified and therefore the exercises
are more exploratory in nature. The student is given a goal, such as creating the Delaunay
triangulation (Okabe et al., 2000) of a point set, and the means to achieve it, e.g., adding
edges between vertices and to carry out the in-circle test. The student can then interactively
explore the structures by making modifications to them and observing the changes. Finally,

1http://www.cs.hut.fi/Research/TRAKLA2/exercises/index.shtml

62 Fifth Program Visualization Workshop

the correctness is assessed by comparing the final state with the expected outcome. The
overall goal is not to teach some specific algorithm but a concept, such as the min-max-angle
criterion related to Delaunay triangulations.

3 Results

The spatial TRAKLA2 exercises were first adopted in the spring 2007 spatial data algorithms
course and were used again on the spring 2008 course. The course is aimed at third year
geoinformatics students. In addition to spatial exercises, some other TRAKLA2 exercises
were also included on the course. These exercises covered data structures important for the
understanding of spatial algorithms. The details of the course are shown in Table 3. The table
tells how many students started the course, how many participated in the final examination,
how many TRAKLA2 exercises there were on the course (and how many of those were spatial
exercises), the total number of TRAKLA2 submissions, and average score gained (compared
to maximum).

Table 1: Basic course data for the Spatial Data Algorithm course
year # students # in exam # exer. (SDA) # subs avg. score
2007 16 9 15 (9 SDA) 723 67%
2008 20 16 16 (10 SDA) 1036 83%

Before TRAKLA2 was introduced, the spatial data algorithms course consisted of com-
bined lecture and studio sessions, a programming project and an exam. In the studio sessions,
the students worked in groups and studied spatial algorithms on a conceptual level. In the
programming project, the students implemented one of the algorithms discussed on the course.
The exam was held after the last lecture. TRAKLA2 was added without reducing any other
requirements on the course.

In the course, each student got personalized input for all TRAKLA2 exercises. The ex-
ercises were divided into rounds with 1–3 exercises in each. In order to pass the course, the
students needed to gain at least 50% of the points from each round. Students were not penal-
ized for returning exercises late. The TRAKLA2 exercises did not affect the students’ final
course grade.

3.1 Developer’s Point of View

The project for creating the TRAKLA2 spatial extension was started in February 2006. The
first exercises were introduced in January 2007. At that time, 9 spatial exercises were used
in the course. In the project, a total of 12 spatial data exercises have been implemented, and
11 of them have been used in practice. The one untested exercise was finished so late that it
could not be added to the spring 2008 course. Several people participated in the project, but
most of the time there were two people working on it. A crude approximation of the amount
of work put into the project is 10 person–months.

The implementation work itself can be divided into two separate tasks: extending the
exercise framework and implementing the exercises. Most of the work in the project went into
the design and implementation of the exercises. Less than 20% of the total effort consisted of
extending the framework. Based on our experience, the implementation of a spatial exercise
typically was more time–consuming than basic data structure or algorithm exercise.

3.2 Teacher’s Point of View

Data on the students’ learning results was collected from TRAKLA2 exercises and the course
exam. TRAKLA2 kept record of each student’s final points and number of submissions to
each exercise. The data was collected the same way in both years.

Fifth Program Visualization Workshop 63

Statistical analysis was used to see if the students’ TRAKLA2 performance were a good
indicator of their exam results. The analysis was made both between TRAKLA2 results and
exam results as a whole, as well as between TRAKLA2 results and a single exam question
that covered R–trees (Guttman, 1984). In both years, there were two TRAKLA2 exercises
and an exam question about R–trees. Summary of the results can be found in Table 3.2.

The results in Table 3.2 are divided into three categories. First, Course info indicates
the number of students who passed the TRAKLA2 exercises and participated in the first
final exam. The second category contains characteristics of linear regression analysis between
TRAKLA2 results and exam results as whole, and the third category regression results for
the R–tree exercises. For the linear regression ρ (correlation), adjusted R2, and its statistical
significance are reported.

Table 2: Learning results on the spatial data algorithms course
Course info Whole exam R-trees
Year N ρ adj. R2 p ρ adj. R2 p

2007 9 0,83 0,65 0,005 0,85 0,69 0,003
2008 16 0,48 0,18 0,058 0,60 0,31 0,015

There was a significant change in the TRAKLA2 results between the years 2007 and 2008.
The change, however, can be explained by the modifications made to TRAKLA2 exercises
between the two courses. One exercise was removed, and two new ones were added. The
exercise removed after 2007 course was one of the hardest exercises (average score 54%),
while the exercises added to 2008 course were among the easiest (average score 98%). The
exam results were similar in both years.

As can be seen in Table 3.2, in both years, there was a strong correlation between students’
performance in TRAKLA2 and in the course exam, especially for the R–tree exercises. All
results were statistically significant (p < 0, 02) except the correlation between TRAKLA2
results and exam results in 2008, which was almost significant (p = 0, 058). Similar results
have been observed in data structures and algorithms courses (Korhonen et al., 2002).

3.3 Student’s Point of View

In spring 2008, we carried out interviews to learn about student experiences with the spatial
exercises. We used the interview guide approach (Patton, 2002), where the interviewer has an
outline of topics to be covered, but may vary the wording and order of the questions to some
extent. We interviewed a total of 4 students (two males, and two females) with two different
nationalities, thus two of the interviews were in Finnish and two in English. The age (22 to 28
years) and background of the interviewees varied as they had had their education in different
countries and universities/high schools.

Two main paths of questioning were explored: what was the student’s subjective opinion
of the system and what did they think about it compared to other teaching methods and
learning materials? For each question, we also had a set of follow-up questions that expanded
on the subject to help us in getting more informative responses.

All interviewees found the system to be beneficial and also thought it was an important
learning tool that should continue to be utilized on the course. Furthermore, they felt that
compared with the lectures, they had learned more details about the algorithms from the
TRAKLA2 exercises, but lectures were still considered to be the most important learning
method. Compared with reading an article, they felt that it was faster to grasp the idea from
TRAKLA2 exercises, yet before attempting the exercises, students thought they should have
some basic knowledge of the algorithm first.

The main benefits mentioned were the visual appearance and interactivity. Students felt
that they were able to better make sense of an algorithm’s principles by observing animations

64 Fifth Program Visualization Workshop

of them. Indeed, all said that the model answer animation was very helpful. However, it
was unclear from the responses whether they truly thought that it aided in learning the
algorithm or that it simply helped them to succesfully solve the exercise. Similarly, the
students found that the simulation aspect of the system, which allowed them to actually
practice the algorithm, makes it easier to memorize the algorithm’s principles. One student
pointed out that by observing and manipulating a visualization, you can actually see how the
algorithm progresses, unlike in a programming exercise in which you need to implement the
algorithm, but typically cannot observe its execution very well.

The issues with the system were related to the automatic feedback and exercise-specific
simulation interfaces. When an incorrect solution is submitted, the system replies with the
number of correct steps from the beginning of the animation. All felt that while you may
this way find the first error, searching for it by stepping through the long model answer
animation is cumbersome. In addition, students thought it was unfair that the system does
not give any points for the correct execution of the algorithm after the first mistake, and
that you cannot continue to solve the exercise from where you made the mistake, leaving you
to trace the algorithm over and over from the beginning. Moreover, they complained about
the mappings between algorithm operations and simulation interface actions such as pushing
buttons and dragging data items. According to the students, this exercise-specific behaviour
was not documented well enough and as one student phrased it, it took some effort to learn
how to get the things move in the way they are supposed to. The pseudocode included in
every TRAKLA2 exercise was considered either completely useless or very useful depending
on the interviewee’s familiarity with programming. A student having strong programming
skills found the pseudocode useful, while less skilled students did not pay attention to it.

4 Discussion

4.1 Developer’s Point of View

In this project, the design and implementation of spatial data exercises was found to take
significantly more time and effort than most of the data structure exercises done prior to this
experiment. The most important factor was that spatial algorithms were mostly unfamiliar to
the development team in the beginning of the project. Thus, for each exercise, the algorithm
in question needed to be studied in order to comprehend it on a level required to implement,
visualize and teach it. This is a time–consuming task. In addition, the use of more complex
visualizations increased the amount of required effort. For example, the use of area visualiza-
tions is not as straight–forward as using basic data structure level visualizations. The area
view is flexible, but specifying how to visualize data using it is more time–consuming than
when using canonical data structure views.

Two years and 10 person–months for creating just 12 exercises may seem to be a lot
effort for quite a little gain, at least from a single instructor’s point of view. However, once
the exercises have been implemented, using them on a course requires only a very small,
constant amount of effort, regardless of the size of the course or the number of exercises used
on it. This proactive approach is in direct opposition to the traditional reactive approach of
manually assessed classroom exercises. In manual assessment, most effort goes into assessing
the students’ answers, and it is proportional to the number of exercises and the size of the
course. In addition, the comparison is not straight-forward as this number would be even
greater if resubmissions could be allowed (that is typically not the case, due to the fact that
it increases logistical problems and work load too much). Furthermore, manual assessment
needs to be done on each iteration of the course. Thus, the longer the automated exercises are
in use, the more benefit they offer. Eventually, automated exercises will require less overall
effort than traditional classroom exercises, since the job needs to be done only once.

The time it takes for this to happen depends on the number of exercises and students on
the course. In large courses (many students), this time limit is reached very soon (in a couple

Fifth Program Visualization Workshop 65

of years). For example, in a data stuctures and algorithms course, some 500 students make
some 50.000 submissions with 40 exercises (approximately 2.5 resubmissions/exercise). Thus,
it is easy to see that the system pays off very soon in this case (it is hard to find enough
personnel to grade this amount of submissions within feasible time limits, not to mention that
the work is not very pleasant). However, it is more difficult to define a precise time limit for
smaller courses such as spatial data algorithms. One thousand submissions (in 2008) is quite
an easy task to handle even by a single instructor and takes probably only a couple of days
to grade manually. Even then, we believe the investment is worthwhile if we take also the
teacher’s and student’s point of views into account.

4.2 Teacher’s Point of View

The learning results show that the correlation between TRAKLA2 exercises and exams on the
spatial data algorithms course is strong and statistically significant. It is even stronger than
the correlation in the basic data structures course (Korhonen et al., 2002). However, this is
likely to be an artefact of the small sample size on the SDA course. With the smallest sample
being only 9 persons, the results of a single person are likely to affect the overall correlation
quite a lot. Despite this, it seems that TRAKLA2 exercise results are a good indicator of
exam results.

One interesting aspect of the TRAKLA2 results is how much effort students put into them.
On the data structures and algorithms course, where TRAKLA2 exercises directly affect the
course grade, a large portion of the students get maximum points, even when no further
benefit is gained after getting 90% of the points (Malmi et al., 2005). On the spatial data
course, TRAKLA2 points have no effect on the course grade. Nonetheless, students seem to
want to do as many TRAKLA2 exercises as they can. Even if this is nowhere near the amount
of effort students use on the data structures and algorithms course, this indicates that most
students are willing to do more work than required. This supports the opinion that this kind
of exercises are not only well accepted by the students but also motivate students to do more
work than in traditional teaching setups.

4.3 Student’s Point of View

The results from the interviews indicate that the students feel that they benefit from the
system, even if this is not obvious from the quantitative results. In fact, the overall attitude
towards the system was very positive and when asked to give it a grade from 0 to 5, all inter-
viewed rated the system at around 4. During the course of the interviews, most interviewees
also asked for more exercises that could cover other algorithms discussed in the course.

In contrast to the majority opinion, one student who had a more advanced background in
computer science than the others, felt that the exercises were not a terribly important learning
tool for him. Yet, even he said that one or two of the exercises had actually straightened out
existing misconceptions he had about the algorithms in question. That is, via the visual
algorithm simulation, he was able to learn some details of the algorithms and adjust his
incorrect pre-existing mental model of them without delving into implementation.

The interviewees also brought up the notion that this kind of more involved learning with
interactive visualizations would lead to a more lasting effect than simply reading. Essentially,
they felt that the exercises engaged them more effectively, and they would remember the
lessons longer. Thus, the student opinions agree with the findings of Naps et al. (2003).

5 Conclusions

In this paper we have described the experiences we had implementing and using the TRAKLA2
system on a spatial data algorithm course. The implementation of the system was a more
challenging task than originally anticipated. One significant contributor to the large amount

66 Fifth Program Visualization Workshop

of effort required was that we were not very familiar with the topic. The effect of the SDA
exercises on student learning is similar to the effect of TRAKLA2 exercises on a basic data
structures course. Furthermore, the students’ attitude to the system seems to be generally
positive and they believe that the system helps them to learn.

From the student’s point of view, the weaknessess of the system were the quite minimal
feedback on incorrect solutions and complex exercise-specific simulation interfaces. Improving
the quality of feedback is currently a topic of ongoing research (Seppälä et al., 2005). The
difficulty of designing intuitive interfaces for visual algorithm simulation is something that
turned out to be more challenging than expected based on previous experience. The mapping
of complex mathematical operations to simulation interface actions for the purpose of creating
automatically assessed algorithm exercises is also open to more research.

Despite the amount of effort required for creating the exercises, we consider the project
a success. Visual algorithm simulation can be used for teaching topics besides basic data
structures and algorithms. Furthermore, after the initial work put into the implementation,
the system can be used effortlessly. The longer it is in use, the more effort it saves.

References

Antonin Guttman. R-trees: a dynamic index structure for spatial searching. In SIGMOD ’84:
Proceedings of the 1984 ACM SIGMOD international conference on Management of data,
pages 47–57, New York, NY, USA, 1984. ACM Press. ISBN 0-89791-128-8.

Ari Korhonen and Lauri Malmi. Taxonomy of visual algorithm simulation exercises. In Ari
Korhonen, editor, Proceedings of the Third Program Visualization Workshop, pages 118–
125, The University of Warwick, UK, July 2004.

Ari Korhonen, Lauri Malmi, Pertti Myllyselkä, and Patrik Scheinin. Does it make a dif-
ference if students exercise on the web or in the classroom? In Proceedings of The 7th
Annual SIGCSE/SIGCUE Conference on Innovation and Technology in Computer Science
Education, ITiCSE’02, pages 121–124, Aarhus, Denmark, 2002. ACM Press, New York.

Mikko-Jussi Laakso, Tapio Salakoski, and Ari Korhonen. The feasibility of automatic assess-
ment and feedback. In Proceedings of Cognition and Exploratory Learning in Digital Age
(CELDA 2005), pages 113–122, Porto, Portugal, December 2005. IEEE Technical Commit-
tee on Learning Technology and Japanese Society of Information and Systems in Education.

Lauri Malmi, Ville Karavirta, Ari Korhonen, and Jussi Nikander. Experiences on automati-
cally assessed algorithm simulation exercises with different resubmission policies. Journal
of Educational Resources in Computing, 5(3), September 2005.

Thomas L. Naps, Guido Rößling, Vicki Almstrum, Wanda Dann, Rudolf Fleischer, Chris
Hundhausen, Ari Korhonen, Lauri Malmi, Myles McNally, Susan Rodgers, and J. Ángel
Velázquez-Iturbide. Exploring the role of visualization and engagement in computer science
education. SIGCSE Bulletin, 35(2):131–152, June 2003.

Jussi Nikander and Juha Helminen. Algorithm visualization in teaching spatial data algo-
rithms. In 11th International Conference Information Visualization IV2007, pages 505–510.
IEEE Computer Society, July 2007. URL http://www.graphicslink.co.uk/IV07/.

Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu. Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams. John Wiley & Sons, 2000.

M.Q. Patton. Qualitative Research and Evaluation Methods. Sage Publications, 2002.

Otto Seppälä, Lauri Malmi, and Ari Korhonen. Observations on student errors in algorithm
simulation exercises. In Proceedings of the 5th Annual Finnish / Baltic Sea Conference on
Computer Science Education, pages 81–86. University of Joensuu, November 2005.

Fifth Program Visualization Workshop 67

Using Graphviz as a Low-cost Option to Facilitate the
Understanding of Unix Process System Calls

Miguel Riesco, Marian Diaz Fondon, Dario Alvarez
Dep. of Computer Science, University of Oviedo, Spain

albizu@uniovi.es

Abstract

Unix system calls to create and execute processes are usually hard to understand for
novice students. In this paper we show how we use graphviz to generate a graphical
representation of the behaviour of these system calls to facilitate the comprehension of
this important part in the learning of the Unix operating system.

1 Introduction

When teaching Operating Systems, it is usual to employ graphics to better illustrate the
different aspects involved. Thus, graphs representing the modules of the operating system,
the lifecycle of processes, or the message-based process communication are common.

One of the topics appearing frequently in this subject is the Unix operating system, from
diverse points of view: internal structure, command-line user, or system programmer. In the
systems programmer view, the API calls of the system are studied, and students develop pro-
grams using these calls. Here it is also usual to resort to graphics supporting the explanation
of how the system calls work as the program using them is running, to show the dynamic be-
haviour of a program using system calls, and to visualize the evolution of the data structures
involved.

These graphics are generally created manually by the teacher, or taken from text books
(where, in turn, they were created by the author manually). Although these static graphs
are useful, some kind of animation where the evolution of processes could be seen would be
better.

As far as learning the Unix system calls is concerned, we teachers have been explaining how
processes are created by using drawings in the blackboard, providing interactive animation
by drawing and erasing as we explain. It is important to have some kind of graphic to help
students comprehending this part of the API, as this is not something students assume as
natural: to the peculiar behaviour of these calls we have to add the fact that there are a
number of processes running concurrently, thus making the comprehension more difficult.

This was detected before (Vogt, 1997), but the solution presented is not readily accessible,
needs specific systems to generate and visualize animations of processes. A different aproach
was done by (Robbins, 2002). However, it is aimed at studying the interaction between fork
and dup system calls. Apart from these, we have not found more systems deemed adequate
for our needs. In this paper we present the work we are developing to automatically generate,
from a real program that uses process-related system calls, graphics illustrating its behaviour,
supporting the teachers explanation of the topic.

2 POSIX process services

The POSIX API offers a reduce set of process-related system calls. There are other ways to
get information about processes, but most of the functionality lies in four system calls:

• fork : clones the process making the call (the clone is a child process).

• exec: changes the program executing the process (does not create a new process, it just
substitutes the code the process is running for another one).

• wait : waits for the termination of a child process.

68 Fifth Program Visualization Workshop

• exit : Terminates the execution of a process.

Students have problems grasping the behaviour of these system calls, as the natural way
would be to have a call creating a new process running the program passed as an argument.
To clarify it, graphics such as those in (Jesus Carretero and Perez, 2007) or (Robbins and
Robbins, 2003), similar to what is show in figure 1, try to represent the behaviour of the
program.

main() {
pid_t pid;
int i, n=4;
for (i=0; i<n ; i++) {
pid=fork();
if (p==0) break;

}
}

Figure 1 Graphic representing the creation of 4 processes

Even though for simple examples it is easy to create illustrative graphics, for complex
programs it is not the case. Besides, trying to correctly represent the dynamic behaviour of
processes can take lots of time.

Trying to solve this problem, and having experience with the graphviz tool (Ellson and
et al., 2004) for other reasons, we applied it to the generation of graphics representing process-
related system calls.

3 Instrumenting programs to generate graphviz graphics

We have developed a function library with names analogous to the original Posix calls (myfork,
myexec, mywait, myexit). These functions maintain the functionality of the original system
call (myfork does fork, myexec does exec, etc.), but they also generate one or more lines
in graphviz dot format to graphically represent the system call. So for example myfork is
implemented as follows:

int myfork() {
pidf=fork();
if (pidf==0) {
ppid=getppid();
pid=getpid();
sprintf(cad,"d -> d;\n",ppid, pid);
store(cad);
}
return (pidf);
}

Figure 2 shows the graphical representation of the four system calls. Each call gets this
representation:

• fork is represented with a node for each process containing the process PID, with an
edge indicating the father-child relationship.

• exec is represented in a similar way, adding the name of the execed program after the
process PID.

• wait adds a dotted line from the child process to its father (showing the SIGHLD signal
sent when the child process ends).

Fifth Program Visualization Workshop 69

• exit uses a dotted node to represent the terminated process.

Figure 2 Graphical representation of the fork, exec, wait and exit system calls

To generate the graphical representation of the dynamic behaviour of a real program, the
original system calls are replaced with the instrumented library functions mentioned before.
A simple program or script does this. The original functionality is preserved and we get its
graphical representation.

Once the process ends execution, a graphviz dot file is created with the representation of
all the executed system calls. This is fed into the graphviz tool, which in turn will generate the
corresponding graphic file. Figure 3 shows the graphical representation of a typical program
that creates processes recursively.

main() {
int i,p;

for (i=0; i<3; i++)
p=myfork();

}

Figure 3 Creating processes recursively and their representation

This kind of graphic is useful in some situations, but we realized that it would be more
interesting to analyze how the program evolves as each call is done, and not only at the end of
the execution. We developed a second version that allows to visualize this dynamic behaviour.
Using the same file generated after the execution of the program, we do the following process:

1. The global dot file is divided into as many files as lines are in it. The first one has the
first line of the original file, the second one the first two lines, and so on. That is, the
ith file has the behaviour of the first i calls (each call has a line in the global dot file).

2. n graphics files are created using the n files of the previous step using graphviz.

70 Fifth Program Visualization Workshop

3. These graphics can be uploaded and then visualized using a web application. With
simple controls, the user is able to see the graphical representation of the execution
sequence, while showing the source code at the same time. With this support, the
teacher can develop an detailed explanation of how the creation and destruction of
processes is evolving. This is of great help for the student to grasp the topic.

void hdler (int a)
{
int cr, pid;

pid=miwait (&cr);

signal(SIGCHLD, hdler);
}

main() {

signal(SIGCHLD, hdler);
pid=myfork();
if (!pid)
myexec("ps");

pid=myfork();
if (pid)
do
pidr=mywait(&cr);
while (pidr!=pid);
else {
myexec("ls");
myexit(-1);

}
myexit(0);
}

Figure 4 Showing the execution sequence of a program

4 Observed results

To date, we have used this method and tool mainly to support the teachers explanation of
the topic, although it could also be used by students to analyze the execution of their own
programs.

We do not have yet an exhaustive analysis of the impact in learning the topic. However,
we can state two facts:

1. The teachers that have used the method are very satisfied, as they believe it facilitates
the construction of examples, as well as the students comprenhension of the topics.

2. The students have accessed the web pages were the teacher-created examples are stored.

Fifth Program Visualization Workshop 71

In the first week we had 874 page loads. We think this is quite a success, as there are
72 students and 8 different examples.

Therefore, we think this experience is positive. We have the intention of going more deeply
and to apply these ideas to other topics in the subject.

5 Future Work

We plan to develop future work along these lines:
The priority is to improve the process of creating and publishing the graphics. Currently

each step (creating the original file, dividing it into iterative files, generating the graphics,
publishing graphics into web pages) is done independently and semi-manually. So, the first
thing to do will be the packaging of the independent steps into one program that automatically
generates and publishes graphics in one step from the data of the execution of a process.

Another issue it to develop a tool to visualize the evolution of the program in real time,
allowing the user to interact with the running program stepping back and forth (a kind of
simple graphical debugger).

Apart from the technical aspect, we have the intention to apply similar ideas to other
parts of the subject that could benefit from this kind of support for the explanations. File
management is a good candidate. In this case we would visualize the evolution of the data
structures involved in performing each system service. We are also studying how to apply this
to other topics such as concurrent programming or input/output management, although it is
not that obvious.

6 Conclusions

In this paper we have shown a method to graphically represent the behaviour of the POSIX
system calls for process management.

Using a free tool such as Graphviz it is even possible to represent simulations of the
dynamic behaviour of the processes using these system calls.

The graphical representation of the behaviour help the teachers develop examples for a
better explanation of the topic, while the students can analyze the behaviour of the programs
in a more convenient way.

The experience has been a positive one. We are still working on the improvement of
the graphics-creation process, and to apply the same ideas to other topics in the Operating
Systems subject.

References

John Ellson and Emden R. Gansner et al. Graphviz and dynagraph static and dynamic graph
drawing tools. Technical report, AT&T Labs - Research, Florham Park NJ 07932, USA,
2004. Also available as http://www.graphviz.org/Documentation/EGKNW03.pdf.

Felix Garca Jesus Carretero, Pedro de Miguel and Fernando Perez. Sistemas Operativos, 2/e.
McGraw-Hill Interamericana, Inc., Madrid, Spain, 2007. ISBN 8448156439.

Kay Robbins and Steve Robbins. UNIX Systems Programming: Communication, Concurrency
and Threads (2nd Edition). Pearson Education, Inc., Upper Saddle River, New Jersey, USA,
2003. ISBN 0-13-042411-0.

Steven Robbins. Exploration of process interaction in operating systems: a pipe-fork simu-
lator. SIGCSE Bull., 34(1):351–355, 2002. ISSN 0097-8418. doi: http://doi.acm.org/10.
1145/563517.563476.

Carsten Vogt. Visualizing unix synchronization operations. SIGOPS Oper. Syst. Rev., 31(3):
52–64, 1997. ISSN 0163-5980. doi: http://doi.acm.org/10.1145/270555.270562.

72 Fifth Program Visualization Workshop

Fifth Program Visualization Workshop 73

Dynamic Evaluation Tree for Presenting Expression
Evaluations Visually

Essi Lahtinen, Tuukka Ahoniemi
Tampere University of Technology, Department of Software Systems

essi.lahtinen@tut.fi, tuukka.ahoniemi@tut.fi

Abstract

Novice programmers have difficulties with their visual attention strategies when fol-
lowing program visualizations. This article presents work in progress on improving the
user interfaces of visualization tools to support students in the visual attention problems.
We introduce a user interface solution called the dynamic evaluation tree. The basic idea
is to reduce the amount of separate windows of the user interface and thus make it possible
to concentrate the visual attention more in one part of the screen. The dynamic evalua-
tion tree has not been implemented yet but we think it would be beneficial to discuss the
implementation in the workshop in advance.

1 Introduction

The user interfaces (UIs) of visualization tools are often build with a similar structure. Many
tools seem to have the same components in their UI and similar locations for them. We feel
that this is partly because the tools are offering multiple different perspectives for the example
and no specific design principles are applied for the UI design. Components are in their places
just because they always used to be.

However, the effectiveness of a visualization tool in its pedagogical point of view may suffer
from the use of multiple components and their placement in the screen. This article references
the results of an eye-tracking study by Bednarik (2007). Based on this, we suggest a new way
of integrating some of the UI components and improving the user’s target of visual attention.

2 A Typical Layout of a Visualization Tool User Interface

A typical visualization tool presents multiple different kinds of actions in turns and parallel
during the execution of a program or algorithm. The different kinds of actions can be for
instance:

• Control reaches a new statement in the program code or algorithm.

• The values stored in the memory of the computer are referenced or changed.

• The values of expressions are evaluated.

• The program prints output and reads input.

A typical layout of a visualization tool UI presents different kinds of actions in different
windows. Different tools have different names for the windows. We list some possibilities:

• Code window: Shows the program code or the algorithm that is executed. It typically
illustrates the execution by highlighting the line of code or algorithm. It can also be
named the algorithm window.

• Memory window : Performs most of the visual effects by drawing pictures of the variables
and data structures and highlighting parts of the pictures. In the UI of Jeliot (Moreno
et al., 2004), this window is named the theater.

• Evaluation window: This window is activated whenever the code window executes an
expression. The values of the operands, the operator, and the value of the whole ex-
pression are shown here. An example is marked with a red circle in Figure 1.

74 Fifth Program Visualization Workshop

Figure 1: The values of the variable in the expression executed in the code window is copied
to the evaluation window for evaluation.

• Console window: Prints the input and reads the output of the program.

In addition to the most usual windows mentioned above, there can be other possibilities like
the annotation window that explains the run of the program in writing (Virtanen et al., 2005).
Also the visualization tools that allow user interaction, often have a window for the control
buttons.

Depending on the focus of the visualization, it is possible that some of the windows are
not necessary and are thus absent. For example, algorithm visualization tools might not
need the evaluation window at all since they present the algorithm on a higher abstraction
level than individual expressions. Examples of tools that do not need an evaluation window
are presented by Malmi et al. (2004) and Naps et al. (2000). Sometimes one window of the
visualization tool contains more than one kind of actions. For instance, the theater in Jeliot 3
(Moreno et al., 2004) actually includes both the memory window and the execution window.

3 Results of an Eye-Tracking Study

A study on the methods of analyzing visual attention strategies in programming by Bednarik
(2007) is partly conducted by tracking the eye movements of programmers using a visualization
tool Jeliot 3 (Moreno et al., 2004). The study describes the visual strategies of both expert
and novice programmers.

According to the study, expert programmers can better follow the information shown
parallel in different windows of the visualization tool. They are able to change their visual
attention strategy during a session of using the visualization tool. At the beginning of a
session, they often concentrate on the code window and later on in the session on relating the
code with the presentations in the other windows. Specifically, the experts follow the code
window of the visualization tool more comprehensively than novices.

In contrast, novice programmers use only a couple of visual attention strategies. They
either switch their visual attention repeatedly between different windows or concentrate all
the time on one of the windows. Since the target audience of visualization tools are mainly
novice programmers, this kind of a visual attention strategy should be taken into account
when designing the UI of the tools.

4 Dynamic Evaluation Tree

When teachers explain the execution of program code to students, they tend to annotate the
program code using curly brackets above or below the code line as seen in Figure 2. It is an
easy way to mark the value or the type of an expression. This kind of annotations can be
used in many different ways. Table 1 gives some examples. The same notation has also been

Fifth Program Visualization Workshop 75

Figure 2: Using curly brackets to explain on a white board.

used by Kumar (2005) in an applet that generates problems related to expression evaluation.
Since this has proven to be a good way to illustrate the execution to students, we suggest it
should be tried in a visualization tool too.

The expressions that the evaluation window presents are also shown in the code window
since they are, of course, part of the statement in execution. Instead of separating the expres-
sion in the evaluation window, we suggest that the evaluation tree could be integrated into
the code window. This would reduce the need to switch the focus of visual attention to the
other side of the screen and thus should be easier to use for novice programmers.

One possibility for integrating the evaluation of expressions in the code window is to use a
presentation similar to the curly brackets in Table 1. In this kind of illustration, the evaluation
of an expression would of course not stay in the code window all the time, but appear step by
step when the expression is executed and disappear when the execution proceeds to the next
line. Thus we call it the dynamic evaluation tree.

An alternative way of presenting the data dynamically inside the code window would be
to show it in a tooltip window when the cursor of the mouse is placed on an expression in
the code window. This could be used in any visualization tool regardless of the use of the
dynamic evaluation tree. However, this solution does not help if you want the evaluations to
be shown as the user clicks the step button.

5 Discussion and Conclusions

Some tools for functional programming, e.g., WinHipe by Pareja-Flores et al. (2007) and
DrScheme by Felleisen et al. (1998), use a similar idea of presenting evaluation of expressions
dynamically. It is called the rewriting model of evaluation. In these tools the evaluation is
presented as a sequence of rewritten expressions that shows the same information than the
curly brackets in the dynamic evaluation tree. The rewriting model works in a very natural
way in functional programming languages. WinHipe has also been evaluated and the students

76 Fifth Program Visualization Workshop

Table 1: Some examples on the use of the curly brackets.
Purpose Example

1. To show the value of a expression

2. To show the type of an expression, es-
pecially useful in case of hierarchical data
structures like a vector containing structs

3. To explain some error situations

have experienced that the tool is easy to use (Ángel Velázquez-Iturbide et al., 2008). However,
we want the original program code to stay in the code window as it is and only add annotations
inbetween the lines. Thus, the curly brackets used in a similar way than the rewriting model,
suits our needs better than rewriting the expressions.

If the code window includes the dynamic evaluation tree, it is actually no longer merely a
code window but more like a multipurpose window. This should not only reduce the constant
switching of the focus of visual attention but also relate the evaluation directly to the code.
When the evaluation is presented directly inside the actual program code, the user may be
able to form a stronger mental association between the code and what it actually does. This
way the user could hopefully learn how to read the code better than when using a separate
evaluation window.

Since novice programmers have most problems with their visual attention strategies, the
dynamic evaluation tree should be most helpful for them. After all, the biggest target audience
of visualization tools is novice programmers. Thus, we feel that the idea is worth trying.

The dynamic evaluation tree has not been implemented yet but we are charting the pos-
sibilities to add it to the next version of an existing visualization tool, VIP (Virtanen et al.,
2005). There will be some technical challenges in the implementation: the code window needs
to be “stretched” vertically to make space for the curly brackets and the text above or below
them. An other possibility could be to show the curly brackets in tooltip windows on top of
the code window. However, this would obscure some code and could thus make the use of the
tool difficult. We think it would be beneficial to discuss the implementation in the workshop
prior to the implementation phase.

When the dynamic evaluation tree is implemented, it should be evaluated with an eye-
tracking study to determine the possible aid with the visual attention strategies. The student
still has at least the code window and the memory window to follow. An interesting possibility
for further research could be to study whether it is possible to guide the student to develop
better visual attention strategies by using the dynamic evaluation tree and other similar
solutions in the UI.

One window fits all!

6 Acknowledgments

Nokia Foundation has partly funded this work.

Fifth Program Visualization Workshop 77

References

Ángel Velázquez-Iturbide, Cristóbal Pareja-Flores, and Jaime Urquiza-Fuentes. An approach
to effortless construction of program animations. Computers & Education, 50(1):179–192,
2008.

Roman Bednarik. Methods to Analyze Visual Attention Strategies: Applications in the Studies
of Programming. PhD thesis, University of Joensuu, Joensuu, Finland, 2007.

Mattias Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi. The DrScheme project: an
overview. SIGPLAN Not., 33(6):17–23, 1998. ISSN 0362-1340. doi: http://doi.acm.org/
10.1145/284563.284566.

Amruth N. Kumar. Results from the evaluation of the effectiveness of an online tutor on
expression evaluation. In SIGCSE ‘05: Proceedings of the 36th SIGCSE technical symposium
on Computer science education, pages 216–220, New York, NY, USA, 2005. ACM. ISBN
1-58113-997-7. doi: http://doi.acm.org/10.1145/1047344.1047422.

Lauri Malmi, Ville Karavirta, Ari Korhonen, Jussi Nikander, Otto Seppälä, and Panu Sil-
vasti. Visual algorithm simulation exercise system with automatic assessment: TRAKLA2.
Informatics in Education, 3(2):267–288, 2004.

A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari. Visualizing programs with Jeliot 3.
Proceedings of the International Working Conference on Advanced Visual Interfaces AVI
2004, May 2004.

Thomas L. Naps, James R. Eagan, and Laura L. Norton. JHAVÉ - An environment to
actively engage students in web-based algorithm visualizations. ACM SIGCSE Bulletin ,
Proceedings of the thirty-first SIGCSE technical symposium on Computer science education
SIGCSE ‘00, 32(1):109–113, 2000.

Cristóbal Pareja-Flores, Jaime Urquiza-Fuentes, and J. Ángel Velázquez-Iturbide. Winhipe:
an ide for functional programming based on rewriting and visualization. SIGPLAN Not.,
42(3):14–23, 2007. ISSN 0362-1340. doi: http://doi.acm.org/10.1145/1273039.1273042.

Antti T. Virtanen, Essi Lahtinen, and Hannu-Matti Järvinen. VIP, a visual interpreter for
learning introductory programming with C++. Proceedings of the Fifth Finnish/Baltic Sea
Conference on Computer Science Education, pages 129–134, November 2005.

78 Fifth Program Visualization Workshop

Fifth Program Visualization Workshop 79

Work in Progress: Automatic Generation of Algorithm
Animations for Lecture Slides

Otto Seppälä, Ville Karavirta
Helsinki University of Technology

Department of Computer Science and Engineering

{oseppala, vkaravir}@cs.hut.fi

Abstract

Algorithm visualizations have not been widely adopted in teaching. One possible rea-
son for this is that visualizations are often developed as standalone systems which can be
difficult to integrate into lectures. Recently XML based formats for the two major presen-
tation tools have been introduced. We present a method and a prototype implementation
which allows creation of algorithm animations in the ODF format. This allows integrating
the animation seamlessly within the lecture material.

1 Introduction

Algorithm visualizations have not been widely adopted in teaching. The problem of integra-
tion of visualization in self-study material has been studied in the context of HTML-based
hypertextbooks (Rößling et al., 2006). HTML allows integrating animations as Java applets,
Flash animations and videos to name a few.

Integrating visualizations in lecture material has been studied a lot less. In a survey
study done by the ITiCSE 2002 Working Group (Naps et al., 2003) 79% of the educators
listed the “time it takes to adapt visualizations to teaching approach and/or course content”
as a substantial impediment for adopting new visualizations to be used on a course. These
same difficulties were also found in a recent international survey by Lahtinen et al. (2007).
Ben-Bassat Levy and Ben-Ari (2007) argue that tool developers often don’t invest enough
in how pedagogical software can be embedded into a curriculum. While the most commonly
used presentation tools (Powerpoint, OpenOffice Impress) allow embedding e.g. video into
the lecture slides, the lecturer is deprived of the possibility of adapting the animation to the
specific lecture case.

For lecture use, the development in AA systems has focused on systems that can be used to
give presentations. For example, Alvis (Hundhausen and Douglas, 2002), Animal (Rößling
and Freisleben, 2002) and MatrixPro (Karavirta et al., 2004) all have features to support
use on lectures. However, in most cases, animations created with the AA tools cannot be
embedded into the lecture material since they are implemented as independent applications.
Instead, they require the educator to switch between a number of programs during classroom
presentation. In some algorithm visualization tools it might be possible to overcome this
limitation by designing the lecture slides inside the algorithm visualization system. In most
cases this is neither desired nor in any way feasible. The fact is that the presentation tools
are much more sophisticated than the AA authoring tools.

Interaction provided by the algorithm animation has a major impact on the learning
results (Hundhausen et al., 2002). However, in lecture situations, it has been shown that
using animations or lecture slides are equally effective (Lawrence et al., 1994). Thus, automatic
generation of lecture slides is a valid approach to promote algorithm animation in teaching.

In this on-going research, we explore the idea of lowering the barrier of integration. Our
approach is to allow the teacher to create algorithm animations for the presentation tool
he/she is already using on lectures. This allows the lecturer to insert the slides seamlessly
within the other lecture material used in the same lecture. The recent introduction of XML
formats for Microsoft PowerPoint and OpenOffice Impress has made it feasible to generate
such formats with external tools. In this paper, we present a proof-of-concept of such a tool

80 Fifth Program Visualization Workshop

that can be used to produce animations of the Kruskal’s algorithm in the form of Open Office
Impress presentations.

2 Motivation

Think of a typical scenario on a data structures and algorithms course where a teacher is to
give a lecture on e.g. Kruskal’s algorithm. In order to use an existing visualizations for this
algorithm, a suitable presentation must first be found. Here, the teacher can already run into
problems. Recent research shows that the existing algorithm visualization are typically of
poor quality and concentrate on the simpler algorithms (Shaffer et al., 2007).

Visualizations often concentrate on certain features of the algorithm and ignore others.
This is often required to limit visual complexity. As research by Ben-Bassat Levy and Ben-Ari
(2007) suggests, the pedagogical style of the visualization might not match the style of the
teacher. The final choice of the visualization is likely to be a compromise which addresses
most points the teacher wants to address during the lecture. In some cases the slides have to
address limitations of the visualization as the visualizations themselves cannot be altered.

Some features of the visualization can also affect the structure of the slides. At least the
visualization often has to be included as a “chunk” to avoid constantly switching between the
presentation software and the visualization tool.

A whole another problem is that visualizations are often topic-specific tools. For a com-
plete course, the teacher might have to use visualizations provided by a large number of
developers. Naturally, this results in visualizations that do not share a uniform look and can
cause unnecessary confusion for teacher as well as the students. Additional confusion can also
be caused by (even subtle) variations in terminology.

According to results of an international survey, the classroom set-ups vary a lot, with the
most typical set-up being a class with a computer and a ceiling-mounted projector (Naps
et al., 2003). Thus, the teacher has to make preparations before the lecture. Applets should
be downloaded and local webpages created to account for problems in network connections.
In some cases the visualization software has to be installed, which might even be impossible in
some lecture hall setups. The safest alternative is often to use a personal laptop for giving the
presentations. However, PowerPoint or PDF slides typically work with whatever computer is
available.

2.1 Why Now?

Until now, the tools for implementing the generation of slides have been missing. One reason
for this is that in the past, the presentation tools have used closed proprietary formats. The
development of open XML formats for the presentation tools has made implementing such
tools much easier. Both of the most popular presentation tools, Microsoft PowerPoint and
OpenOffice Impress, have open XML formats, Office Open XML and Open Document Format,
respectively. These languages make it possible to generate presentations for these tools with
reasonable effort.

In addition, Extensible Stylesheet Language Transformations (XSLT) (Clark (editor),
1999), a language designed to transform XML documents to other formats, makes trans-
forming XML documents into the formats used by presentation tools simpler. The output of
XSLT can be another XML format, HTML, or text. There are many tools available to do the
XML transformations using XSLT. The most well-known XSLT processors for Java are Xalan
and Saxon. This provides a simple way to implement transformations between languages.

3 Technical Description of Proof-of-concept Implementation

Our proof-of-concept implementation generates OpenOffice Impress slides visualizing the be-
havior of the Kruskal’s minimum spanning tree algorithm. Kruskal’s algorithm was chosen

Fifth Program Visualization Workshop 81

because it seems for some reason to be rather rarely visualized. The algorithm also uses
an interesting data structure - the union-find structure usually implemented as a forest of
father-linked trees.

Part of the idea behind the proof-of-concept was to use existing tools to automate parts of
the process including graph layout software as well as XSL transformation packages. Figure 1
describes the architecture of our implementation. This whole process is ran using an Ant
script. The first step is to execute a Java program. It first generates suitable input data for
the Kruskal’s algorithm and then executes the algorithm. For each state of the algorithm, the
program creates graph descriptions in a format readable by the GraphViz (Ellson et al., 2002)
graph layout package. The graph descriptions hold information on colors, line widths, labels
etc. Our program also creates the father linked trees that form the union-find structure used
by Kruskal’s algorithm. These are also laid out by GraphViz. The third and last part of the
visualization is the sorted list of graph edges. The Java program outputs a visualization of
this list directly in OpenOffice Impress format. In addition to the visualization, the program
outputs supplementary information as slide notes that are later combined to the visualization
steps.

Figure 1: Architecture of our solution

The next step in creating the visualization is running the GraphViz programs dot and
neato on the input data. GraphViz is an open-source software package intended for graph
drawing. The system includes several different layout algorithms suitable for different kinds
of graphs. Dot generates hierarchical layouts and is used to create the union-find graphics.
Neato generates spring-based layouts and is used to layout the graph. In addition, the system
supports several different output formats like png, jpeg, ps, pdf, and svg. In our program, we
decided to use Scalable Vector Graphics (SVG) (W3C, 2001) since it is easy to process in the
later steps. SVG is an XML language targeted for describing graphics.

The last step converts the SVG-files into corresponding Impress snippets, which are com-
bined with the parts created directly by the Java code. This is done with XSLT which
transforms the multiple SVG-files into one Open Document Format (ODF) presentation. The
XSL-stylesheet is divided into two parts that handle different parts of the input. The first
one generates the main ODF-document creating the needed styles and pages. It combines
each slide from the multiple input files (tree, graph, notes, and edge list). For the SVG-files
(used for trees and graphs) we have another XSL-stylesheet. This stylesheet transforms the
graphical elements of the SVG into ODF. It also takes care of things like coordinate system
transformations, scaling etc.

The output of the process is in Open Document Format (Durusau and Brauer, 2006).
ODF is an open, XML-based file format for office applications. The format specifies an XML
structure for text documents, spreadsheets, and presentations. In an ODF presentation, each
slide includes the slide contents as well as the notes attached to that slide. Listing 1 gives an
example of the graphical primitives in one ODF slide. The primitives are the same as in, for
example, SVG. However, as can be seen from the listing, the attributes used are from several
different namespaces.1

1This caused some major problems in the implementation, since the ODF specification does not clearly
state which attributes should be in which namespace. Especially specifying styles was difficult, partly due to
the fact that Impress gives no error messages when using wrong namespaces, it just ignores the attributes.
Another problem was with the positioning of the graphical primitives. Although the attributes are from the

82 Fifth Program Visualization Workshop

1 <draw:g xmlns:svg="http://www.w3.org/2000/svg">

2 <draw:polygon draw:style-name="fillwhitestrokewhite" svg:x="1cm" svg:y="1cm" draw:points="

0,236 0,0 203,0 203,236 0,236" svg:height="11.8cm" svg:width="10.15cm" svg:viewBox="0 0

203 236">

3 <text:p/>

4 </draw:polygon>

5 <draw:ellipse svg:x="6.7cm" svg:y="3.875cm" svg:width="1.4cm" svg:height="1.45cm" draw:style

-name="fillredstrokered"/>

6 <draw:frame draw:style-name="gr9" draw:text-style-name="P1" draw:layer="layout" svg:x="7.4cm

" svg:y="4.6cm">

7 <draw:text-box>

8 <text:p text:style-name="P1">Joensuu</text:p>

9 </draw:text-box>

10 </draw:frame>

11 <draw:ellipse svg:x="8.2cm" svg:y="7.425cm" svg:width="1.4cm" svg:height="1.45cm" draw:style

-name="fillorangestrokeorange"/>

12 <draw:frame draw:style-name="gr9" draw:text-style-name="P1" draw:layer="layout" svg:x="8.9cm

" svg:y="8.15cm">

13 <draw:text-box>

14 <text:p text:style-name="P1">Oulu</text:p>

15 </draw:text-box>

16 </draw:frame>

17 <draw:line svg:x1="7.7cm" svg:y1="5.25cm" svg:x2="8.6cm" svg:y2="7.5cm" draw:style-name="

fillnonestrokeblack"/>

18 </draw:g>

Listing 1: Example of ODF graphical primitives.

Figure 2 shows one slide in a generated example of the Kruskal’s algorithm when opened
in OpenOffice Impress. On the left, one can see the additional slides in the presentation. On
the notes page, the presentation includes questions that the instructor can ask the students,
as well as answers to the questions.

4 Conclusions

In this work, we have introduced an idea to develop tools to easily create slides for the
presentation tools. Such tools would allow instructors to integrate algorithm visualizations
into the tools they use on lectures instead of using separate visualization systems. We feel
that this type of integration might be a solution to the problem of algorithm visualizations
not used as widely as the AV research community hopes.

Our vision is to have automatic tools that output algorithm animations as presentation
slides. This approach saves the teacher from switching between an algorithm visualization sys-
tem and the presentation software. Compared with using, say, applets to visualize algorithms
on lecture, the advantage of the slides is that the lecturer can edit them and adapt them to
his/her other learning material. This can be, for example, changing terminology, changing
colors, translating it to e.g. German, or adding explanations. In addition, the lecturer can
alter the parameters for the tool creating the example, allowing the example to be tuned for
the current audience.

Besides the visualization, automatically generated lecture material can be accompanied
with dynamic documentation in the form of notes for the lecturer to use when showing the
animation. These can be things to point out, questions for the audience, and such. This
makes it easier for the teacher to make the lecture more interactive.

All the previous can be done in the presentation tool that the teacher is more likely to
be familiar with than an algorithm animation system. Although we are algorithm animation
system developers ourselves, we have to admit that the AA authoring tools are not of the
same high quality as the presentation tools.

svg-namespace, the coordinates used are different.

Fifth Program Visualization Workshop 83

Figure 2: A generated example in OpenOffice Impress.

The limitations of the current proof-of-concept implementation are obvious. The im-
plementation is for a single algorithm, the process requires several software packages to be
installed, and the output is only for Open Office Impress. However, from Open Office Impress,
the presentations can be exported as Flash or HTML to be easily added to web pages. In
addition, they can be saved in Microsoft PowerPoint and PDF formats.

In the future, creating more such generators could be beneficial. In addition, allowing ODF
export from some of the existing AV systems is an interesting direction. Furthermore, we see
that an online service for generating presentations of different topics might be popular among
CS educators. Especially if the service could create slides for both Microsoft PowerPoint and
OpenOffice Impress. This also eliminates the need to install the required software packages.

References

Ronit Ben-Bassat Levy and Mordechai Ben-Ari. We work so hard and they don’t use it:
acceptance of software tools by teachers. In ITiCSE ’07: Proceedings of the 12th annual
SIGCSE conference on Innovation and technology in computer science education, pages
246–250, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-610-3. doi: http://doi.acm.
org/10.1145/1268784.1268856.

James Clark (editor). XSL Transformations (XSLT) 1.0 specification. W3C Recommendation,
World Wide Web Consortium, nov 1999.

Patrick Durusau and Michael Brauer. Open document format for office applications (open-
document) v1.0 (second edition). Oasis committee specification, OASIS, July 2006.

John Ellson, Emden Gansner, Lefteris Koutsofios, North Stephen C., and Gordon Woodhull.

84 Fifth Program Visualization Workshop

Graphviz open source graph drawing tools. Lecture Notes in Computer Science, 2265/2002:
594–597, 2002.

Christopher D. Hundhausen and Sarah A. Douglas. Low-fidelity algorithm visualization.
Journal of Visual Languages and Computing, 13(5):449–470, October 2002.

Christopher D. Hundhausen, Sarah A. Douglas, and John T. Stasko. A meta-study of al-
gorithm visualization effectiveness. Journal of Visual Languages and Computing, 13(3):
259–290, June 2002.

Ville Karavirta, Ari Korhonen, Lauri Malmi, and Kimmo St̊alnacke. MatrixPro – A tool for
on-the-fly demonstration of data structures and algorithms. In Proceedings of the Third
Program Visualization Workshop, pages 26–33, The University of Warwick, UK, July 2004.

Essi Lahtinen, Hannu-Matti Järvinen, and Suvi Melakoski-Vistbacka. Targeting program
visualizations. In ITiCSE ’07: Proceedings of the 12th annual SIGCSE conference on
Innovation and technology in computer science education, pages 256–260, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-610-3. doi: http://doi.acm.org/10.1145/1268784.
1268858.

Andrea Lawrence, Albert Badre, and John T. Stasko. Empirically evaluating the use of
animations to teach algorithms. In Proceedings of the 1994 IEEE Symposium on Visual
Languages, St. Louis, MO, pages 48–54, 1994.

Thomas L. Naps, Guido Rößling, Vicki Almstrum, Wanda Dann, Rudolf Fleischer, Chris
Hundhausen, Ari Korhonen, Lauri Malmi, Myles McNally, Susan Rodgers, and J. Ángel
Velázquez-Iturbide. Exploring the role of visualization and engagement in computer science
education. SIGCSE Bulletin, 35(2):131–152, June 2003.

Guido Rößling and Bernd Freisleben. ANIMAL: A system for supporting multiple roles in
algorithm animation. Journal of Visual Languages and Computing, 13(3):341–354, 2002.

Guido Rößling, Thomas Naps, Mark S. Hall, Ville Karavirta, Andreas Kerren, Charles
Leska, Andrés Moreno, Rainer Oechsle, Susan H. Rodger, Jaime Urquiza-Fuentes, and
J. Ángel Velázquez-Iturbide. Merging interactive visualizations with hypertextbooks and
course management. SIGCSE Bulletin, 38(4):166–181, 2006. ISSN 0097-8418. URL
http://doi.acm.org/10.1145/1189136.1189184.

Clifford A. Shaffer, Matthew Cooper, and Stephen H. Edwards. Algorithm visualization: a
report on the state of the field. In SIGCSE ’07: Proceedings of the 38th SIGCSE technical
symposium on Computer science education, pages 150–154, New York, NY, USA, 2007.
ACM Press. ISBN 1-59593-361-1. doi: http://doi.acm.org/10.1145/1227310.1227366.

W3C. Scalable Vector Graphics (SVG) 1.0 specification. http://www.w3.org/TR/SVG,
September 2001.

Fifth Program Visualization Workshop 85

PathFinder: A Visualization eMathTeacher for Actively
Learning Dijkstra’s algorithm

M. Gloria Sánchez-Torrubia, Carmen Torres-Blanc, Miguel A. López-Mart́ınez
Applied Mathematics Department, Universidad Politécnica de Madrid

gsanchez@fi.upm.es

Abstract

PathFinder is a new eMathTeacher for actively learning Dijkstra’s algorithm. In
Sánchez-Torrubia et al. (2007) the concept of eMathTeacher was defined and the minimum
as well as some additional requirements were described. The tool presented here is an en-
hanced paradigm of this new concept on Computer Aided Instruction (CAI) resources:
an application designed following the eMathTeacher philosophy for active eLearning. The
highlighting new feature provided by this application is an animated algorithm visualiza-
tion panel showing, on the code, the current step the student is executing and/or where
there is a user’s mistake within the algorithm running. PathFinder also includes another
two interesting new features: an active framework area for the algorithm data and the
capability of saving/retrieving the created graph.

1 Introduction and Preliminaries

Graphical and dynamic web based tools are more appealing for students than traditional
learning materials. It has been confirmed that learners spend much more study time when
visualization is involved; however, there has been some skepticism about the real value of visu-
alizations as a pedagogical tool. Many educators think that visual tools enhance their lectures
and significantly increase student’s comprehension, but such tools are of little effectiveness
when students are not actively engaged in the learning process (Naps et al., 2003). Further-
more, when students are not required to wonder about the concepts, to provide answers and
to predict what is happening next, they might adopt a passive attitude that is not beneficial
at all, and may even be harmful for their training. The analysis presented by Hundhausen
et al. (2002) asserts that ”how students use AV technology, rather than what students see,
appears to have the greatest impact on educational effectiveness” and their study ”suggests
that the most successful educational uses of AV technology are those in which the technol-
ogy is used as a vehicle for actively engaging students in the process of learning algorithms”.
They concluded that, those who are actively engaged with the visualization have consistently
outperformed the other ones who passively viewed them. Thus, in order to avoid a passive at-
titude, during the execution, the program should interact continuously with the users, forcing
them to predict the following step.

In Clear et al. (2001), the authors state that a ”consciously designed approach informed
by a constructivist view holds the most potential for effective online learning designs”; and
that ”learners must construct their understanding through an active process building on
past experiences and knowledge and that knowledge cannot be simply accepted from others”.
According to this opinion, we believe that active learning is the only effective way of acquiring
knowledge and that students cannot only look how the processes evolves, but they must get
involved in the process itself.

The challenge of discovering new ways to motivate students in active learning encouraged
us to develop a new kind of web based tools. Our main goal has been to get students in-
volved, as actively as possible, in their learning process. With this objective in mind, we
have been developing several interactive Java applets, that allow visualized execution of algo-
rithms (Sánchez-Torrubia et al. (2008a), Sánchez-Torrubia and Gutiérrez-Revenga (2006) &
Sánchez-Torrubia et al. (2008b)). Those applets have been designed under the eMathTeacher
philosophy and are being used as complementary material for blended learning (bLearning)
(Sánchez-Torrubia et al., 2008a) both for teachers on classroom lectures and students when

86 Fifth Program Visualization Workshop

learning by themselves. This way, the power and effectiveness of face to face teaching are
boosted with the flexibility and technical capabilities of eLearning, turning out the students
into the protagonists of their own learning progression.

In the next sections, we review the definition of eMathTeacher as well as its main require-
ments. This kind of application introduces a new concept in computer aided education as
they can act as genuine virtual trainers extending the teacher’s hand through the Web.

1.1 eMathTeacher Definition

An eLearning tool is eMathTeacher compliant (Sánchez-Torrubia et al., 2007) if it works as
a virtual maths trainer. In other words: if it is an on-line self-assessment tool that help users
to actively learn math concepts or algorithms by themselves, correcting their mistakes and
providing them with clues to find the right solution.

They can also be applied as bLearning complementary material for being used both by
teachers on classroom lectures and by students when learning maths by themselves. However,
the most important feature of these tools is the feasibility of being used for practicing with
maths methods or algorithms while the system guides the user towards the right answer.

1.2 Minimum requirements for an eMathTeacher

These, as described in (Sánchez-Torrubia et al., 2007), are the minimum conditions we estab-
lish a tool must fulfil to be considered an eMathTeacher :

• Step by step inquiring: for every process step, the student should provide the solution
while the application waits in a stand by mode, expecting the user’s input.

• Step by step evaluation: just after the user’s entry, the eMathTeacher evaluates it,
providing a tip for finding the proper answer if it is wrong or executing it if ok.

• Visualization of every step change that happens.

• Easy to use.

• Flexible and reliable: allowing the user to introduce and modify the example and to
repeat the process if desired.

• Clear presentation within a nice and friendly graphic environment, helping insight.

• Platform independency and continuous availability (anytime, anywhere).

1.3 Additional requirements for an eMathTeacher

The requirements listed above are mandatory for an application to be considered an eMath-
Teacher. In addition, there are some other desirable conditions, containing those described
in (Sánchez-Torrubia et al., 2008b), that these tools should meet. The main features to be
included are:

• Algorithm visualization panel.

• Framework panel showing the current state of the algorithm data structures. It should
also allow the user to update those structures.

• Samples library and/or saving/retrieving capabilities. This requirement should include
saving, for later analysis, both the basic structure the user is working with, and also the
user’s interaction history.

• Language menu.

Fifth Program Visualization Workshop 87

• Integration of different tools as a complete suite, able to cover the whole topic.

• Automatic execution process (optional), especially designed for very complex exercises.

• Capability to find and show alternative solutions once the problem has been solved.

• A theoretical introductory part.

• No installation or maintenance tasks required and light downloading weight.

Other authors (see e.g. Jarc et al. (2000), Rößling and Naps (2002) & Naps et al. (2003))
have already highlighted most of the above listed features as being required for a learning tool
to be effective. Last year, we performed a literature search & study (Sánchez-Torrubia et al.,
2007), which allowed us to identify a number of systems designed under Java Technology and
oriented to help students on learning different Computer Science topics (e.g. IDSV, JHAVÉ,
TRAKLA2, JFLAP or AulaWeb Self-Assessment Module). Though those tools seem similar
in terms of functionality, there is actually a feature that makes eMathTeachers (i.e. eLearning
tools that are eMathTeacher compliant) different: they only execute the current step in case
the input is ok and return a customized error message, providing a tip for finding the proper
answer, otherwise. This unique characteristic provides eMathTeachers with full interactive
learning capabilities, and distinguishes them from other systems so far.

2 PathFinder: an eMathTeacher for Dijkstra’s algorithm

Dijkstra’s algorithm (Dijkstra, 1959), commonly known as shortest path algorithm, solves the
problem of identifying the shortest path in a weighted graph from an initial vertex to the
other vertices. The central idea behind the algorithm is that each subpath of the minimal
path is also a minimum cost path.

Keeping the features described in the preliminaries, we have designed and implemented an
application, available at http://www.dma.fi.upm.es/java/matematicadiscreta/dijkstra,
(see Figure 1) for active learning of Dijkstra’s algorithm, including both with and without fi-
nal node possibilities. Our PathFinder has been designed under the eMathTeacher philosophy
(section 1.1) and meets all the minimum requirements listed in section 1.2 as well as nearly
all the additional ones (section 1.3).

Figure 1: PathFinder: an eMathTeacher for Dijkstra’s algorithm

2.1 Detailed description

The application runs in a Java Web Start window. The window is split into four areas: graph,
algorithm, messages and framework areas (see Figure 1), where graph and framework panels
are the main working areas. The first one is a panel where the graph is displayed and allows
the user to create and edit nodes and weighted edges. The second one is the framework area.
A table, presenting the current state of the algorithm structures (fixed and unfixed nodes,
distances to the initial node and predecessors list), is displayed in this panel.

88 Fifth Program Visualization Workshop

The algorithm area displays the execution code, showing in blue the current step or in
red the point where the user’s mistake is located, while the message panel provides clues to
find the right solution or indicates the next step to be done. This panel also offers useful hints
when the graph is being edited.

The menu bar presents a graph saving/retrieving option, three execution options and a
language selector, currently implemented in Spanish and English.

2.2 Editing the graph

The graph nodes are drawn by left clicking the mouse, and the edges by right dragging
between two nodes. When an edge is being created, a text cell appears in the message panel
for entering the edge’s weight. The nodes can be moved or deleted at any time and the edges
can be erased or their weigh modified. The first created node is predefined as the initial node
(e.g. A in Figure 2) but the user has also the possibility of changing the initial node and/or
defining a final node (e.g. D in Figure 2).

Figure 2: The PathFinder showing an error on predecessors update

2.3 Executing the algorithm

Once the graph has been introduced and the algorithm mode has been selected, the application
checks whether it can be executed or not (as stated in Dijkstra (1959) ”we restrict ourselves
to the case where at least one path exists between any two nodes”, i.e. to connected graphs).
If the graph is not connected and thus the algorithm cannot be executed, an error message
indicating this fact is displayed, otherwise the algorithm starts.

The execution has three performance options: two modes of interactive running (step by
step and iteration verification) and an option of direct execution, able to directly provide the
final result (restricted to help on verifying results or to simplify the flow process in case of
very complex exercises).

In step by step verification option, for every algorithm iteration, the user must update
first the fixed and unfixed nodes, then check whether it is correct or not and finally update
distances and predecessors and check again the input correctness. Iteration verification
option is aimed at more advanced students as the user should perform a whole iteration before
checking the input correctness. For every verification (in both interactive running modes),
when any of the updates is not right, the message panel shows the event: an error message
pointing out the problem and providing hints for rectifying is displayed. Simultaneously, in

Fifth Program Visualization Workshop 89

the algorithm panel, the step where the mistake is located changes into red (see Figure 2). If
all the updates are right, the application changes the node and/or edge’s color and waits for
the next user’s entry.

2.4 Comparison with previous eMathTeachers and PathFinder analysis

While using the previous eMathTeachers as complementary material for bLearning, we have
realized the necessity of implementing an algorithm visualization panel inside the tool for
enhancing the student’s consciousness of each of the algorithm steps. Also, while encourag-
ing them to write down the algorithm structures, we found the necessity of including those
structures inside the tools. As a consequence, when designing PathFinder, we incorporated
several new features that, in our opinion, entail huge pedagogical enhancement:

• The algorithm visualization panel (see Algorithm area in Figure 1) provides a better
understanding of the algorithm execution code.

• The framework panel (see Framework area in Figure 1) allows users to practice every
algorithm step exactly as if they were implementing it by hand, but including the graphic
panel as well as the feasibility of being corrected and advised by the tool when a mistake
happens (this is the main feature of eMathTeacher philosophy: acting as a virtual maths
teacher).

• The retrieval option offers the instructor the possibility of preparing selected exercises
for the students, and gives the learner the advantage of saving the graph for later review.

In Hundhausen et al. (2002), the authors assert that ”AV technology has been successfully
used to actively engage students in such activities as what-if analysis of algorithmic behavior,
prediction exercises and programming exercises”. The eMathTeacher philosophy has been
mainly inspired by getting the students involved in the two first activities: what-if analysis
of algorithmic behavior (what means understanding the algorithm design in-depth) as well
as predicting the algorithm outcomes (that entails a good understanding of the algorithm
process). In our opinion, as a consequence of the above described improvements, PathFinder
will get the users even more engaged in the two first activities, obtaining as a result an active
learning of this algorithm and thus, hopefully, successful educational results.

3 Conclusions and next steps

In this paper, PathFinder, a new tool for actively learning Dijkstra’s algorithm, has been
presented. Moreover, some new additional requirements for eMathTeacher tools have been
introduced. PathFinder is an enhanced paradigm of this new concept on CAI resources. The
highlighting new feature provided by this application is an animated algorithm visualization
panel. It shows, on the code, the current step the student is executing and also where there
is a user’s mistake within the algorithm running. Other important new attribute is the active
framework area for the algorithm data, designed for encouraging students to active learn
the algorithm process, as implemented by hand, while the application verifies the correctness
of each user’s input. Finally, the application runs in a Java Web Start window and this
technology allows it to read and write in the client’s hard disk, which gives us the feasibility
of saving and retrieving graphs. This way, the instructor can load an examples library and
the students can save the edited graphs for later revision or modification.

PathFinder has recently been finished, which means that it has not been used by any
students yet. Though there are not impact evaluations of it, based on our previous research,
we have high expectations regarding its potential effectiveness on helping learning activities.
As part of that research, the previous graph eMathTeachers impact has already been evaluated
by comparing the rates obtained on the graphs exercise in a Discrete Mathematics final exam.

90 Fifth Program Visualization Workshop

As detailed in Sánchez-Torrubia et al. (2007), the results showed a deeper understanding of
algorithms process in the study group, even considering that those tools offered neither the
algorithm visualization panel nor the framework panel.

In the near future, we aim to perform a tool effectiveness evaluation, following the models
proposed in (Reeves and Hedberg (2003) & Naps et al. (2003)), as well as measuring its impact
on the students’ learning. We are also preparing an users survey (covering both students and
teachers population) added to a collection of opinions, suggestions for improvement, etc.

Currently, we are designing and developing a whole suite which actually integrates different
types of graphs and graph algorithms fitted in it. The design includes all four panels described
in the PathFinder and will feature the above mentioned functions together with the possibility
of saving the user’s interaction history for later analysis and/or (automatic) assessment.

Acknowledges

This work has been partially supported by UPM (Spain) under Project No. IE07 1010-029.

References

Tony Clear, Arto Haataja, Jeanine Meyer, Jarkko Suhonen, and Stuart A. Varden. Dimensions
of distance learning for computing education. SIGCSE Bull., 33(2):101–110, 2001.

Edsger Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

Christopher D. Hundhausen, Sarah A. Douglas, and John T. Stasko. A meta-study of algo-
rithm visualization effectiveness. J. Visual Languages & Computing, 13(3):259–290, 2002.

Duane J. Jarc, Michael B. Feldman, and Rachelle S. Heller. Assessing the benefits of inter-
active prediction using web-based algorithm animation courseware. SIGCSE Bull., 32(1):
377–381, 2000.

Thomas Naps, Guido Rößling, Vicki Almstrum, Wanda Dann, Rudolf Fleischer, Chris Hund-
hausen, Ari Korhonen, Lauri Malmi, Myles McNally, Susan Rodger, and J. Ángel Velázquez-
Iturbide. Exploring the Role of Visualization and Engagement in Computer Science Edu-
cation. SIGCSE Bull., 35(2):131–152, 2003.

Thomas C. Reeves and John G. Hedberg. Interacive Learning Systems Evaluation. Educa-
tional Technology Publication. Englewood Cliffs, 2003.

Guido Rößling and Thomas L. Naps. A testbed for pedagogical requirements in algorithm
visualizations. SIGCSE Bull., 34(3):96–100, 2002.

M. Gloria Sánchez-Torrubia and S. Gutiérrez-Revenga. Tutorial interactivo para la enseñanza
y el aprendizaje de los algoritmos de búsqueda en anchura y en profundidad. In Proceedings
of the XII J. de Enseñanza Universitaria de la Informática, pages 573–580, 2006.

M. Gloria Sánchez-Torrubia, Carmen Torres-Blanc, and Juan B. Castellanos. Defining eMath-
Teacher tools and comparing them with e&bLearning web based tools. In Proceedings of
the International Conference on Engineering and Mathematics (ENMA), 2007.

M. Gloria Sánchez-Torrubia, Carmen Torres-Blanc, and Vı́ctor Giménez-Mart́ınez. An eMath-
Teacher tool for active learning Fleury’s algorithm. International Journal Information
Technologies and Knowledge (IJ ITK), 2(5):437–442, 2008a.

M. Gloria Sánchez-Torrubia, Carmen Torres-Blanc, and Sanjay Krishnankutty. Mamdani’s
fuzzy inference eMathTeacher: a tutorial for active learning. WSEAS Transactions on
Computers, 7(5):363–374, 2008b.

Fifth Program Visualization Workshop 91

Animation and Interactive Programming: A Practical
Approach

Phillip Benachour
Department of Communication Systems

Infolab21, Lancaster University, UK

p.benachour@lancaster.ac.uk

Abstract
This paper describes a work in progress of using animation software tools to teach

programming principles. The motivation behind this work is to encourage students in
higher education who do not see themselves as serious programmers to engage with some
of the concepts and methods used in the teaching of programming. In addition this work
was used in workshops to engage with local and regional secondary schools focussing on the
use of animation as a tool for learning programming principles. The results presented in
this paper are based on feedback from first year undergraduate students. Initial feedback
from teachers, pupils and schools has been very positive and requests for additional visits
have been made. This has created an opportunity to further engage with these schools
for additional workshops. Analysis and feedback from these schools will be presented in
the workshop.

1 Introduction

The teaching of new concepts and hands on practical skills such us programming can be
combined with animation and visuals to great effect. The use of learning objects to deliver
programming skills to multimedia students and other disciplines has been explored and imple-
mented (Jones, 2004). Modern programming languages taught at university level is generally
seen as a major obstacle for new undergraduates and such a perception of difficulty is com-
monly cited as a reason for disengagement with the subject as a whole (McCracken et al.,
2001). A number of papers in the literature have introduced Actionscript as a suitable tool
for teaching introductory programming. For instance, Crawford and Boese (2006) compared
Actionscript code with more complicated code in Java for similar programs and concluded
that Actionscript not only teaches the fundamental of programming and concept of object-
oriented development to the students but also enables them to find the errors in the smaller
tasks which is easier to solve. In a more recent paper (Leutenegger and Edgington, 2007),
Actionscript has been recommended as a useful step up to high-level languages such as C++.
Actionscript is seen to be easier to learn due to the immediate visualization it provides. In
addition Leutenegger and Edgington (2007) argued that Actionscript is widely used in the
real world e.g for designing animations and 2 dimensional games.

The aim of this paper is to describe and evaluate a work in progress on using animation
and interactive programming to engage first year university students, from diverse educational
backgrounds and subject disciplines, with programming principles. This work in progress fo-
cuses on encouraging students to learn progressive programming tasks from simple commands
and assignments to designing a game. The design of a BreakOut computer game is perhaps
one of the most useful exercises the students get involved in when learning programming and
scripting concepts. Students learn about collision detection between the ball, paddle, bricks
and boarders, user interaction by moving the paddle using keyboard controls, update of scores
using dynamic text and the use of sound to make the learning of programming experience
more enjoyable and engaging.

2 Using Actionscript for Animation and Scripting

Actionscript uses traditional coding techniques but allows the user to see how each piece of
code effects the running or execution of the program, allowing the user to have an instant

92 Fifth Program Visualization Workshop

visual understanding of what the code is doing. To help with coding errors Actionscript uses a
syntax checker and will inform the user of errors either before or as they run a program. This
is in contrast to other programming or scripting languages such as Javascript where errors are
not so easily identifiable and the simple omission of a comma can cause the entire program to
fail. A Javascript program will also only execute when the whole program is complete, where
as with Actionscript code written for a specific action can be run even if the program, as a
whole, is unfinished.

2.1 Teaching the use of Increment and Decrement Operators

Perhaps the most obvious and easiest example to work with when beginning to use Action-
script for animation, is to use the increment and decrement operators. Students are encour-
aged to experiment with moving objects in a two-dimensional and three-dimensional world.
The following simple script allows an object to move in the x direction with incrementing
values of x by one pixel every time the frame is rendered and displayed.

1 onClipEvent (load) {

2 this._x = 50; // this sets the initial x position of our clip

3 }

Now try the following code but only for the X-axis:

1 onClipEvent (enterFrame) {

2 this._x = this._x+1; // this moves our clip 5 pixels to the right every frame

3 }

Students are then asked to record their answers on the following questions:

• What value would you assign “this. x” to in order to centre it in the middle of the stage?

• What would you change in the code above to stop your circle from moving?

• What would you change in the code above so that your ball moves in the opposite
direction?

The students are then asked to introduce a “y” variable to the Actionscript code and give
their movieclip the following action:

1 onClipEvent (load) {

2 this._x = 50;

3 this._y = 50;

4 }

5 onClipEvent (enterFrame) {

6 this._x+=1;

7 this._y+=1;

8 }

The routine above enables students to understand how two-dimensional animation works
using the following questions as a guide:

• What happens now and why?

• What would the values of “this. x” and “this. y” be set to put your circle in the centre
of your movie clip?

• What sort of increments/decrements would you set “this. x” and “this. y” to in order
to get the ball object to travel in the four possible directions from the centre.

Fifth Program Visualization Workshop 93

2.2 If and If ... Else Statements

Using if and if ... else statements for conditional testing checks whether a condition is true
or false. The ball object in the example above can be used to do this. Students are asked to
think of ways to stop the ball object moving when it gets to a certain pixel on the screen. A
routine like the one below can achieve this task very easily:

1 onClipEvent (enterFrame) {

2 if (this._x<300) {

3 this._x += 1;

4 }

5 }

Once students get the idea that they can modify the code to make the ball object move
upwards and downwards once the value of “this. x” reaches 300 pixels, they are asked to ex-
periment with different values of the x co-ordinate and then the y co-ordinate. An alternative
way to assess students understanding is to invite them to comment on a piece of code already
written such as the one below:

1 onClipEvent (enterFrame) {

2 if (this._x<300) {

3 this._x += 1;

4 } else if (this._x>300) {

5 this._y += 1;

6 }

7 }

Using if and if ... else statements can be used more imaginatively by testing whether an
object is moving within a defined space or by testing for collision detection. The design of
a breakout game is an example in case where the ball is required to bounce off the edges
or a paddle. Students are initially given code which does not take into account the variable
ballRadius, once the type the code and see it working they realise that the ball object goes
over the edges set. In order to solve this problem ballRadius is included as part of the if
statements for the x and y directions as shown in the code below:

1 var screenWidth = 550;

2 var screenHeight = 400;

3 var ballRadius = 10;

4 ball._x = ball._x + ballSpeedX;

5 ball._y = ball._y + ballSpeedY;

6
7 if (ball._x<ballRadius) {

8 ball._x= ballRadius;

9 ballSpeedX*=-1;

10 } else if (ball._x>screenWidth - ballRadius) {

11 ball._x = screenWidth - ballRadius;

12 ballSpeedX*=-1;

13 }

14
15 if (ball._y<ballRadius) {

16 ball._y= ballRadius;

17 ballSpeedY*=-1;

18 } else if (ball._y>screenHeight - ballRadius) {

19 ball._y = screenHeight - ballRadius;

20 ballSpeedY*=-1;

21 }

2.3 Using Functions and loops for layering of bricks in a breakout game

A function is defined using the function keyword, followed by the name of the function, and
then a list of parameter names within the following brackets. In the example code below the

94 Fifth Program Visualization Workshop

Figure 1: BreakOut Game

function laybricks is passed three parameters which provides the information that allows the
layering of bricks.

1 function layBricks(numWide, name, row) {

2 eval(name)._width = screenWidth/numWide;

3 eval(name)._height = 0.25*screenWidth/numWide;

4 }

In this function, a loop is created that lays numWide bricks:

1 function layBricks(numWide, name, row) {

2 eval(name)._width = screenWidth/numWide;

3 eval(name)._height = 0.25*screenWidth/numWide;

4
5 for (i=0; i<numWide; i++) {

6 }

7 }

This loop, begins by setting a variable called i, to 0, and then loops numWide times, and
creates a new name, based on the original brick name, so that we have a unique variable name
for each of the new bricks we are going to create. Figure 1 below shows output produced once
the game is completed.

1 nextLevel = 100;

2 numBricks = 0;

3
4 function layBricks(numWide, name, row) {

5 eval(name)._width = screenWidth/numWide;

6 eval(name)._height = 0.25*screenWidth/numWide;

7
8 for (i = 0; i < numWide; i++) {

9 brickName = name + i; // trace(brickName);

10 duplicateMovieClip (name, brickName, nextLevel++);

11 eval(brickName)._y = 100 + row*eval(name)._height;

12 eval(brickName)._x = (i + 0.5)*eval(name)._width;

13 numBricks++;

14 }

15 }

16
17 layBricks(10, "yellowBrick", 0);

18 layBricks(10, "orangeBrick", 1);

19 layBricks(10, "blueBrick", 2);

20 layBricks(10, "greenBrick", 3);

Fifth Program Visualization Workshop 95

3 Evaluation and Student Feedback

The first year course in Information and Communications Technology is common to all first
year undergraduates studying for a communications degree. The course is taught taking
into consideration the needs of both potentially highly numerate and technologically aware
students as well as students who may have no previous experience of ICT. The first year intake
has between 60-70 students, most studying for programmes on Information Technology, Media
and Computer Communications. The aim of the survey below is to carry out a quantitative
and qualitative evaluation of how effective Actionscript has been in helping students engage
with programming and scripting principles, the data and feedback collected was intended to
focus on the following three areas:

• Previous experiences of using programming and scripting

• Experience of computer animation, game design, and game play

• Evaluation of Actionscript as a tool to learn programming principles and for application
development

From the cohort of students studying the course, 67% said they had some previous expe-
rience of programming and 47% with scripting. When asked if they found some programming
concepts easy to implement, 82% said that they felt that learning to program without visu-
alisation was hard and slowed their progress. A majority said that they decided to carry on
with their courses at school/college because it was too late to change. Many felt that they
found difficulty in acquiring fluency in programming.

When considering the distribution of the type of programming languages used, 10%, 16%
and 26% said they have had experience of C, C++ and Java respectively. It is also worth
noting here that the remaining 48% who have not used C/C++, Java have used other high-
level languages such as Pascal, Prolog, C#, VB.NET, and Delphi. We can summarise from
this that two-thirds of first year students have some experience of programming using a high-
level language at a basic level which is a positive outcome in as far as recruiting students with
programming skills. However, this experience was proved to be very basic and engagement was
an issue as pointed out in the previous paragraph. Of the 47% of students who said they have
scripting experience, 30% said they had used Actionscript before but only at an introductory
level (using a button for controlling the start of an animation), 35% said they have used
Javascript. The remaining 35% have used VBScript 18%, PHP 12%, ASP 5%. Figure 1
shows the distribution of programming and scripting previously used at school/college by
first year students.

All student (100%) of this group found Actionscript an easier tool to visualize and under-
stand basic programming and scripting.

For students who had no previous experience of programming and scripting languages
33% and 53% respectively, engaging them in learning programming principles was rather
easier than anticipated. The students had no prior experiences and there was no bias towards
a particular programming or scripting language. It was also noted that for this group, the
majority tended to have had more experience of using video and audio editing tools with some
good experience of Web design and image editing. 80% of this group found Actionscript a
useful tool to understand basic programming and scripting.

In order to find out how effective Actionscript has been in engaging and helping student
to learn programming principles, success rates of the questions put to the students during the
practical sessions were measured. The results of these are shown in Table 1.

4 Conclusions and Further Research

The results attained from the practical assessments has shown that correct responses have
progressively improved over time. Although this was somewhat expected it also demonstrated

96 Fifth Program Visualization Workshop

student commitment and engagement as well. The challenges presented when designing the
breakout computer game is an example of how well the students have adapted to using Ac-
tionscript.

Questions used % correct

What value would you assign this. x to in order to centre it in the
middle of the stage?

53%

What would you change in the code above to stop your circle from
moving?

46%

What would you change in the code above so that your ball moves
in the opposite direction?

58%

What would the values of this. x and this. y be set to put your
circle in the centre of your movie clip?

65%

What sort of increments/decrements would you set this. x and
this. y to in order to get the ball object to travel in the four
possible directions from the centre.

60%

Use if and if ... else statements to control the movement of the
ball when it reaches a position on the x-axis

51%

Use if and if ... else statements to control the movement of the
ball when it reaches a position on the x-axis and y-axis

60%

Write the code you would add to make the ball bounce from the
bottom and top wall (y-axis)

71.4%

Write the code you would use to modify the gameloop code to
take into account the height of the ball

85.7%

Reflecting the ball off the paddle and back up the screen 100%
Explain how you would add a 5th layer of bricks with a score of
50 points- to the screen. What additional code would you use?

93%

What code would you add to generate sound for your game? 90%
Recall the different approaches of programming in Javascript and
Actionscript. Which programming style do you prefer?

90% said Actionscript

Table 1: Student success rate in the practical sessions

References

Stewart Crawford and Elizabeth Boese. Actionscript: a Gentle Introduction to Pogramming.
Journal of Computing Sciences in Colleges, 21(3):156–168, 2006. ISSN 1937-4771.

Ray Jones. Designing Adaptable Learning Resources with Learning Object Patterns. Journal
of Digital Information, 6(1), 2004.

Scott Leutenegger and Jeffrey Edgington. A Games First Approach to Teaching Introductory
Programming. In SIGCSE ’07: Proceedings of the 38th SIGCSE technical symposium on
Computer science education, pages 115–118, New York, NY, USA, 2007. ACM. ISBN 1-
59593-361-1. doi: http://doi.acm.org/10.1145/1227310.1227352.

Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan, Yifat Ben-
David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz Wilusz. A multi-
national, multi-institutional study of assessment of programming skills of first-year cs stu-
dents. SIGCSE Bull., 33(4):125–180, 2001. ISSN 0097-8418. doi: http://doi.acm.org/10.
1145/572139.572181.

Fifth Program Visualization Workshop 97

Animalipse - An Eclipse Plugin for AnimalScript

Guido Rößling, Peter Schroeder
CS Department, TU Darmstadt

Hochschulstr. 10
64289 Darmstadt, Germany

roessling@acm.org

Abstract

AnimalScript, while highly expressive and versatile, is not easy to edit with no
editor support. We have developed an Eclipse plugin for editing AnimalScript that
includes a text editor, outline, and code assist. We expect that this plugin will make the
editing process much easier and faster. The paper presents both technical aspects of the
development and the resulting plugin.

1 Introduction

Animal is a versatile system for creating, modifying and presenting algorithm animations
and visualizations (AV content). As far as we know, it is currently the only AV system that
allows users to create AV content using all of the following approaches:

• visually using drag and drop in a novice-friendly graphical user interface (Rößling and
Freisleben, 2002),

• textually using the highly expressive AnimalScript language (Rößling and Freisleben,
2001; Rößling et al., 2004),

• employing a new Java-based generation API,

• using a set of external applications for generating context-specific animations for trees
(Rößling and Schneider, 2006) and graphs / graph algorithms (Naps et al., 2003; Rößling
et al., 2007),

• as well as using one of the currently more than 130 animation generators of the built-in
generator framework (Rößling and Ackermann, 2006). Here, it is important to note
that the number of generators does not necessarily indicate the number of algorithms
covered, but more the different “flavors” for a given algorithm, such as the choice of the
programming language and the output language used for the presentation.

All generation approaches except for the first are directly or indirectly based on using
AnimalScript, which is in the process of taking over the role of the preferred representation
of Animal AV content from the built-in ASCII notation. The reasons for this development are
the human-readable notation of AnimalScript, the ease with which it can be generated from
programs and edited manually, and the expressiveness of the language. Since 2008, Animal
also includes a window that provides a BNF-based definition of the AnimalScript notation,
as well as (since 2006) a small text editor for directly entering or modifying AnimalScript
input and visualizing the results.

AnimalScript files contain one command per line, such as a definition of a new graphical
object or a transformation of some objects. The animation is organized in steps, each of
which can contain one or more commands. If multiple commands are used in a step, the step
is surrounded by curly braces { }. Please see (Rößling et al., 2004; Rößling and Freisleben,
2001) for more information about AnimalScript.

Many of the other established AV systems also cover some of the generation approaches
listed above. For example, JAWAA (Akingbade et al., 2003) and the GAIGS and JSamba

98 Fifth Program Visualization Workshop

(Stasko, 1998) visualization engines used by JHAVÉ (Naps and Rößling, 2006) also use a
scripting language. JAWAA also offers a visual editor in its current release. JHAVÉ offers
a set of content generators that are similar to the approaches offered in Animal’s gener-
ator framework and can be run off the web. However, they focus on specifying algorithm
parameters, and thus do not allow the definition of visual properties such as colors.

While AnimalScript can be edited easily using Animal’s built-in editor or any arbitrary
text editor, the comfort offered by this is somewhat lacking. The internal editor only offers
rudimentary editing features; cut, copy and paste features are only supported by using the
underlying operating system support. The editor does not offer a search facility, display of
line numbers, indication of recognized syntactical or semantical errors, or syntax highlighting.
Thus, editing a longer AnimalScript file is awkward and can become frustrating if the system
indicates a parsing problem “in line 117”. Despite (usually) precise information about the
nature of the error, the lack of line numbers, search or “go to line” functions makes locating
and fixing the error a tedious and less than enjoyable process.

We decided that his unsatisfying state needed addressing. Essentially, we saw three differ-
ent approaches to provide better user support: improve the built-in editor to be comparable
in comfort to the user’s preferred text editor, create a new custom editor for AnimalScript
content, or provide AnimalScript bindings for at least one commonly used text editor. It
did not seem useful to invest much effort only to improve the built-in editor so that it would be
comparable to, but still different from, a given user’s preferred text editor. The same applied
to creating a new custom editor. Therefore, we opted to provide AnimalScript bindings for
at least one commonly used text editor. We now had to decide which text editor to use.

The main target audience for Animal and thus for AnimalScript are students and
teachers of Computer Science. We decided to base our work on the text editor provided by
the Eclipse IDE, as this IDE is used in many Computer Science courses, so that our target
users may already be familiar with the basic features of the underlying text editor.

The remainder of the paper is structured as follows. In Section 2, we will briefly summarize
the features offered by the Eclipse IDE, focusing on plugins and text editors. Section 3 outlines
the plugin for editing AnimalScript code using the Eclipse IDE features. Section 4 shows
usage examples to illustrate the support for AnimalScript provided by the Animalipse
plugin. Finally, Section 5 evaluates the plugin and presents areas for further research.

2 A Brief Overview of the Eclipse IDE

Eclipse (Beck and Gamma, 2003) was presented by IBM in 2001 and turned into open source in
2004. Due to a large number of developers, the platform offers a huge selection of plugins and
extensions for different needs, including a large selection of supported programming languages,
version control system front-ends for CVS and Subversion, workflow and design components.
Probably the best known plugin is the Java Development Tools, employed by many students,
researchers, developers, and teachers world-wide for writing Java-based programs.

The main components of the Eclipse platform are the workbench responsible for the graph-
ical user interface, including the maintenance of the Eclipse windows, and the workspace. The
workspace is a separate file system that handles the creation, storage and editing of files,
including files, directories and projects.

The graphical front-end of Eclipse contains the usual menus and dialogs as well as editors
and views. Editors are used to modify resources - the most well-known is the Java Editor for
editing Java class source. Views are responsible for presenting content. Eclipse already offers
many different views such as the Problems, Progress or Console view.

Eclipse plugins are Java programs that are loaded by the Eclipse runtime environment
and added to the platform. They are connected to Eclipse using “extension points” provided
by Eclipse, which describe different aspects of the Eclipse platform that can be extended by a
given plugin (Beck and Gamma, 2003). The definition of the extension points used is stated

Fifth Program Visualization Workshop 99

in a XML-based “plugin manifest” that has to be provided together with each plugin.
One of the strengths of the Eclipse editors is the integration of helpful features. This

includes syntax highlighting (using either color or font changes, or a combination), the ability
to directly jump to a given line in the editor, and marking (recognized) issues. The marking
facilities called “annotations” in Eclipse can include a mark in the left or right margin of the
text editor next to the affected line. An x-shaped cross in a red circle mark in the left margin
is used to indicate syntactical (or other) errors, together with a red mark in the scroll bar
to the right. Additionally, the annotated text is indicated, often by a wavy red line, and an
appropriate description is placed in the Problems view.

The Outline view provides a table of contents-like view of the editor contents. For a Java
class, this view lists all methods and import statements; clicking on a line directly positions
the text editor on the associated content line. Longer components in the text editor may also
be folded to reduce visual clutter and make it easier to focus on the current area of work.

Finally, Eclipse editors can also support the user by content assist, often also called code
assist or code completion. This feature lets the user choose from a pop-up list of constructs or
completions possible at the current text caret position. It can be used both for the insertion
of a single keyword or complete structure, such as an if..else.. statement, and for the choice
of a given method to be invoked, including the required invocation parameters. This type
of support is only possible if the plugin is aware of the syntax of the underlying language or
the set of classes and their methods, respectively. Both aspects of content assist can be very
helpful and save time, especially for users who are new to the target language.

3 Animalipse: An Eclipse Plugin for AnimalScript

The Animalipse plugin was expected to provide the following functionality:

• support the creation and editing of AnimalScript as an Eclipse plugin;

• allow easy installation using the Eclipse plugin installation support;

• provide cut, copy and paste functionality, as well as undo and redo;

• allow the display of line numbers, animation step folding (showing only one line for a
set of commands in the same animation step), automatic indentation of code lines, and
syntax highlighting;

• locate and mark errors in the AnimalScript file;

• display a useful overview in the Eclipse Outline view;

• and finally provide content assist for the AnimalScript command notation.

An AnimalScript file edited in the plugin shall also be directly runnable from the plugin,
so that the user does not have to start the required Animal system externally.

The Animalipse plugin is based on an Eclipse text editor and thus directly inherits some
of the requested functionality, such as the support for cut, copy and paste, as well as the easy
installation typical for Eclipse plugins.

3.1 Parsing AnimalScript Content

Some of the features listed above, especially for marking errors, syntax highlighting and
content assist, require that the editor “understands” what is being edited. As the editor may
also need to request the same piece of information multiple times, we decided to implement
a document object model (DOM) for AnimalScript (AS-DOM) to allow for faster and
more expressive access to information about the currently selected element or current editing

100 Fifth Program Visualization Workshop

position. The essential structure of the AnimalScript-DOM consists of a root element,
metadata about the AnimalScript contents, and a set of animation steps. The steps are
placed in ascending order, just as they would be for the animation. Each step can contain
one or multiple animation commands.

The creation of a AnimalScript-DOM requires parsing the UTF-8 encoded Animal-
Script contents from the text editor. By registering as an observer in the IDocument provided
by the Eclipse editor classes, the parser can be informed automatically about changes in the
code, and thus update its DOM. However, each key press triggers an update event, which
would force the system to parse the complete script (again). Therefore, we decided to enforce
a waiting interval of at least 2.5 seconds between two parsing iterations to prevent unnecessary
continuous parsing of the editor contents. Of course, this interval can be adjusted by the end-
user.

Animalipse does not directly use abstract syntax trees to support the parsing process,
but parses elements on a line base. This is possible as AnimalScript mandates that each
command will occupy exactly one line (and that each input line will contain exactly one
command, if one ignores comments or the curly braces used to indicate steps). A command
consists of a sequence of language elements separated by an arbitrary amount of whitespace.
Each element can for example be numeric, a literal, or a keyword. The internal representation
of the parsed elements is similar to an abstract syntax tree, called ASAST for Animal-
Script-Abstract Syntax Tree. The definition of the tree is created when the plugin is started
by parsing a BNF-like definition file, which makes a later adaptation of the AnimalScript
language easy.

3.2 Content Assist

The content assist feature of Animalipse uses the content assist components provided by the
Eclipse editors. Based on the internal representation of the script and the current position,
the plugin creates a list of recommendations for content that could be used to complete
the current selection. Compared to many other languages (including Java), this process is
difficult for AnimalScript content: the notation used by AnimalScript contains many
optional keywords or elements, making the number of possible completions at any given point
comparatively high. After the list is populated, it is presented to the user, who is then
prompted to choose one of the elements.

Similarly, locating syntax errors in a given AnimalScript input file is also difficult due
to the profusion of optional elements. In this case, the large number of branches possible
at (almost) any given point in the parsing process leads to a number of “wrong errors”: a
command line is only syntactically incorrect if it does not match any of the possible syntactical
rules. Or, to put it differently, if there is a way to parse a given line without a syntax error,
the line is syntactically correct, and all parse errors when trying a different combination of
optional elements have to be ignored. Additionally, the parser has to be able to detect when
there is “too much” input in the current line: the command has been completely parsed, but
contains additional elements that thus do not belong to the text.

Several nodes in the AnimalScript abstract syntax tree can be annotated with context
information, as shown in Listing 1. The context definition provides additional details about the
context of a given leaf in the AnimalScript abstract syntax tree. Line 1 shows the unique
identifier of the regarded context element (tupleOfTwoNaturalNumbers), used for defining
absolute coordinates. The preceding dollar sign indicates that this is the element to be
defined. Each definition line starts with the “at” character @ and can provide the following
information:

@info elements provide a user-readable text that describes the element.

@display provides a user-readable rendition of the terminal output in the editor. This is for

Fifth Program Visualization Workshop 101

example necessary to indicate the position(s) of whitespace.

@cursorhint specifies how many character the cursor has to be shifted to the left after
inserting the definition shown in @display into the editor. In this example, choosing the
element will lead to the inclusion of the text (X , Y) including all spaces. The value
7 for the cursorhint places the cursor seven positions to the left of its position after the
insertion, and thus places it on the first coordinate inside the parentheses.

1 $tupleOfTwoNaturalNumbers

2 @info=A tuple of two natural numbers

3 @display=(X , Y)

4 @cursorhint=7

Listing 1: Context Definition Example

The combination of the presented features made the implementation of the parsing and
content assist components of the Animalipse plugin far more difficult than we originally
anticipated. However, we managed to overcome all obstacles and now have a full-fledged
Eclipse plugin for AnimalScript.

3.3 Integration into Eclipse

The integration of the Animalipse plugin into Eclipse uses five different Eclipse extension
points, as outlined in Table 1.

Plugin component Eclipse Extension Point

AnimalScript editor org.eclipse.ui.editors
Error marking org.eclipse.core.resources.markers
Starting the animation org.eclipse.debug.ui.launchShortcuts
New Animation Creation Wizard org.eclipse.ui.newWizards
Plugin Preferences org.eclipse.ui.preferencesPage

Table 1: Eclipse Extension Points used for the Animalipse plugin

The AnimalScript editor is based on the org.eclipse.ui.IEditorPart interface and extends
the Eclipse TextEditor class. It handles AnimalScript files with the extension .asu. This
editor is automatically started whenever the user opens or creates a file with this extension.

Other components of the plugin, such as code folding or the creation of the overview,
similarly implement provided interfaces and extend existing Eclipse classes.

3.4 Installing the Plugin

To install the plugin, the user selects the Help → Software Updates → Find and Install. . .
menu entry. After selecting “new features to install”, a new remote site has to be created with
the address http://www.algoanim.info/Animal/download/Animalipse/ and confirmed by
OK. After finishing the settings, a list of updates should appear and include Animalipse.
After confirming all subsequent dialogs, the plugin will be installed and can be used after a
restart of Eclipse.

4 Example Features of the Animalipse Eclipse Plugin

New AnimalScript files can be generated inside Animalipse by using the built-in creation
wizard. The user first uses the File menu, toolbar or menu entry to create a new file of type
AnimalScript. In the following dialog, the title of the animation, its width and height and

102 Fifth Program Visualization Workshop

Figure 1: The Animalipse text editor with syntax highlighting

the animation author and title can be specified. This information is then used to create the
appropriate AnimalScript header and open the resulting file in the AnimalScript editor.

Figure 1 shows an example of the Animalipse text editor. Keywords used to define
graphical objects are highlighted in green, operation keywords are shown in orange. All other
keywords are shown in purple. Literal values, such as object names and Strings, are shown
in blue. Color definitions are placed before a background of the chosen color. The original
text is colored in a complementary color to be readable. Font definitions (not included in the
example) are placed in italics. Finally, comments - introduced by the hash mark # - are shown
in dark green. All color settings can be adjusted in the Animalipse plugin preferences.

Figure 2: Indication of a syntax error by the Animalipse plugin

Figure 2 shows a view of a small code snippet with a syntax error (the keyword “filled”
is missing, as can be seen by comparing the two code lines). The syntax analysis has to
be triggered manually by selecting the Search for errors. . . entry in the context menu of
the editor. The incorrectly placed keyword fillColor is shown with a wavy red underline.
Additionally, the marker in the left margin and the line marker in the scrollbar to the right
indicate the error, while the filled red square at the top right shows the presence of (at least)
one error. Additionally, but not shown in Figure 2, a short error description appears in the
Eclipse Problems view.

The outline of the rather simple animation shown in Figure 1 is shown in Figure 3. Each
step can be folded or unfolded to show more details. If multiple operations take place in the
same animation step, they are shown on separate lines. Clicking on an entry positions the
cursor on the appropriate line in the text editor.

Content assist is provided whenever the user requests it explicitly by pressing the CTRL
key together with the space key. Additionally, Animalipse offers content assist if a space
character is entered. A small window pops up and offers the list of legal completions at this
point, allowing the user to choose one or close the window and continue manually.

Finally, AnimalScript content can be run directly by choosing the context menu entry
Run → Load in Animal. This requires that the user has first told the plugin where the
Animal jar file can be found by going to Window → Preferences. . ., selecting the plugin from
the list, and entering or browsing for the location of the Animal jar.

Fifth Program Visualization Workshop 103

Figure 3: The Animalipse outline, showing the structure of the animation

5 Summary and Future Work

In this paper, we have presented the Animalipse Eclipse plugin for creating, editing and
debugging AnimalScript-based AV content. The plugin is very easy to integrate into an
existing Eclipse installation and behaves similarly to other established plugins, such as the
Java Development Tools plugin for Eclipse. Users should therefore find it easy to use the
plugin to become more proficient with AnimalScript.

The abstract syntax tree model used for the AnimalScript language allows extending the
language’s definition by modifying the BNF-based notation without touching the plugin code.
However, a certain measure of caution has to be exerted when editing the file, to prevent the
introduction of parsing errors. At the same time, the underlying notation could be exchanged
by another language, such as JAWAA (Akingbade et al., 2003), by editing the notation file
accordingly.

The other features described in this paper, such as syntax highlighting, searching for
errors, and content assist, should also prove helpful. There are some minor issues with some
of these components, which are due to the underlying language notation. For example, the
choice lists for code assist can become very long, if the user requests assistance near the start
of a command. This is due to the large number of optional keywords and components used
throughout AnimalScript. While this makes programming in AnimalScript comfortable
(“specify what you need and skip the rest”), it also leads to a large number of possible correct
completions.

The error detection is not fully accurate; found errors will lead to parsing errors in Animal,
but not all errors during loading in the animation in Animal may be detected by the plugin.
For example, the user may request a certain transformation subtype, such as moving the
nodes 3 and 4, on a structure that does not support this operation, for example a square.
Syntactically, this command is correct, but it will lead to a semantic error when the execution
is attempted. Therefore, the plugin cannot detect this type of error unless it were more tightly
interwoven with Animal’s internal parsing process - which would slow down the processing
of files.

104 Fifth Program Visualization Workshop

Other issues that shall be addressed in the future include highlighting the use of the
currently selected identifier or showing context information about elements as a tool tip.
Automatic formating of AnimalScript files, similarly to the feature offered by the Java
editor, would also be helpful. Finally, it would be interesting to remodel Animal’s content
generators as Eclipse wizards or create an internal Animal view. However, these aspects
require another full-time student working on them as a Bachelor Thesis.

If you are interested in trying out Animalipse, please follow the steps described in Section
3.4. Constructive feedback is appreciated! We would also like to cooperate with others who
wish to implement Eclipse plugins for “their” AV notation.

References

Ayonike Akingbade, Thomas Finley, Diana Jackson, Pretesh Patel, and Susan H. Rodger.
JAWAA: Easy Web-Based Animation from CS 0 to Advanced CS Courses. In Proceedings
of the 34th ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE
2003), Reno, Nevada, pages 162–166. ACM Press, New York, 2003.

Kent Beck and Erich Gamma. Contributing to Eclipse. Principles, Patterns, and Plugins.
Addison-Wesley Longman, 2003. ISBN 978-0321205759.

Thomas L. Naps and Guido Rößling. JHAVÉ - more Visualizers (and Visualizations) Needed.
In Guido Rößling, editor, Proceedings of the Fourth Program Visualization Workshop, Flo-
rence, Italy, pages 112–117, June 2006.

Thomas L. Naps, Jeff Lucas, and Guido Rößling. VisualGraph - A Graph Class Designed for
Both Undergraduate Students and Educators. In Proceedings of the 34th ACM SIGCSE
Technical Symposium on Computer Science Education (SIGCSE 2003), Reno, Nevada,
pages 167–171. ACM Press, New York, 2003.

Guido Rößling and Tobias Ackermann. A Framework for Generating AV Content on-the-
fly. In Guido Rößling, editor, Proceedings of the Fourth Program Visualization Workshop,
Florence, Italy, pages 106–111, June 2006.

Guido Rößling and Bernd Freisleben. AnimalScript: An Extensible Scripting Language
for Algorithm Animation. Proceedings of the 32nd ACM SIGCSE Technical Symposium
on Computer Science Education (SIGCSE 2001), Charlotte, North Carolina, pages 70–74,
February 2001.

Guido Rößling and Bernd Freisleben. Animal: A System for Supporting Multiple Roles in
Algorithm Animation. Journal of Visual Languages and Computing, 13(2):341–354, 2002.

Guido Rößling and Silke Schneider. An Integrated and “Engaging” Package for Tree Anima-
tions. In Guido Rößling, editor, Proceedings of the Fourth Program Visualization Workshop,
Florence, Italy, pages 23–28, June 2006.

Guido Rößling, Felix Gliesche, Thomas Jajeh, and Thomas Widjaja. Enhanced Expressiveness
in Scripting Using AnimalScript V2. In Proceedings of the Third Program Visualization
Workshop, University of Warwick, UK, pages 15–19, July 2004.

Guido Rößling, Silke Schneider, and Simon Kulessa. Easy, Fast, and Flexible Algorithm
Animation Generation. In Proceedings of the 13th ACM SIGCSE/SIGCUE International
Conference on Innovation and Technology in Computer Science Education (ITiCSE 2007),
Dundee, Scotland, page 357. ACM Press, New York, NY, USA, 2007.

John Stasko. Building Software Visualizations through Direct Manipulation and Demon-
stration. In John Stasko, John Domingue, Marc H. Brown, and Blaine A. Price, editors,
Software Visualization, chapter 14, pages 187–203. MIT Press, 1998.

Fifth Program Visualization Workshop 105

A Java API for Creating (not only) AnimalScript

Guido Rößling, Stephan Mehlhase, Jens Pfau
CS Department, TU Darmstadt

Hochschulstr. 10
64289 Darmstadt, Germany

roessling@acm.org

Abstract

Generating animation content can be tedious and result in “messed-up” code. We
present a Java API that can be used for generating AnimalScript-based animations. It
was designed to be extendable to other output formats, such as SVG or other scripting
languages. Apart from describing the use of the API, we also show a concrete example
that was generated using the API to illustrate the API’s expressiveness.

1 Introduction

Creating AV content is often a slow and tedious job. Automating this process offers faster -
and reusable - generation of new animation content. However, the automation requires either
an underlying language notation or a (hopefully well-designed) API, or both. If present, such
features can make the content provider’s job much easier, and may even allow end-users to
create visualization content on-the-fly.

In this paper, we present a Java API for creating animation content which uses Animal-
Script as the main output. However, the API can also easily be extended to support other
notations or languages, making it an attractive tool for many AV content generators, including
those that do not use the Animal AV system.

In the following, we will first briefly describe the underlying AnimalScript language. In
Section 3, we then introduce the design for the Java API, followed by an example animation
generated using the API. Sections 5 and 6, respectively, present a brief informal evaluation
and comments on extending the API to other notations. Section 7 summarizes the work and
outlines areas of future research.

2 A Brief Overview of AnimalScript

AnimalScript (Rößling et al., 2004) is a versatile notation for programming algorithm vi-
sualization and animation (AV) content. AnimalScript offers a very flexible placement of
elements, using either absolute values or an offset relative to another object’s bounding box,
text baseline, or an individual node in a polygon or polyline. Almost all animation effects can
be assigned a relative starting time as an offset from the beginning of the associated anima-
tion step and a duration, which can be specified using either milliseconds or the number of
animation frames. Figure 1 shows Animal’s built-in editor for AnimalScript code.

Animation effects can also be given a concrete animation “method” as a String parameter,
which further describes how the affected object(s) shall be animated. For example, the generic
move command can be given a method name translate #2, which will change the behavior
from moving the complete object to moving only the second node of the object(s).

Similarly to all other scripting notations, AnimalScript can easily be entered with a
standard text editor. We have recently completed an Eclipse plugin for editing Animal-
Script, including code assist and the check for syntax errors (Rößling and Schroeder, 2008).

AnimalScript contains a large selection of optional components in almost all commands,
which makes it easier to write for hand-coded scripts. AnimalScript can also be automati-
cally dumped while the underlying algorithm is being executed. However, just as for all other
scripting-based approaches, this quickly leads to cluttered code for the actual algorithm. Fig-
ure 2 shows an example; here, the actual algorithm code is almost totally obscured by the

106 Fifth Program Visualization Workshop

manually generated visualization code. It may take an “expert” to see that this piece of code
actually calculates the step width for Shell Sort.

Figure 1: Example AnimalScript code

Figure 2: (Bad) Example of integrated AnimalScript code generation

Before our research presented in this paper, several content authors had already recog-
nized this situation as bad, and developed their own (specialized) “mini-API” to deal with
exactly those contents they needed. However, the limited expressiveness of these APIs and
(sometimes) their lack of a good software engineering architecture prevented other content
authors from adopting any of these APIs. We therefore set out to develop an “official” Java
API for generating AnimalScript code that should be easy to use by current and future
content authors. In Section 3, we will outline the basic approach for this API.

3 AnimalScript API Design

The main design goals for the AnimalScript Java API were the following:

• Provide a “cleaner” way of generating AnimalScript code than shown in Figure 2,

• Offer a “common” API that all content generators for Animal can use,

• Use a clean inheritance hierarchy using both classes and interfaces as appropriate,

• Support the current language features of AnimalScript in the Java API,

• Provide means to extend the API for future additions to AnimalScript,

Fifth Program Visualization Workshop 107

• Simulate the “optional elements” inside AnimalScript in a sensible way.

We decided to use one comparatively large Factory class (Gamma et al., 1995) called
“Language”. This abstract class provides a large set of methods for creating new objects of
the proper type, e.g. there is a method called newPoint for creating a new Point object. In
fact, there is often more than only one way to create a given object, using a different set of
creation parameters. In this case, all such Factory methods will usually be mapped to a single
(abstract) method. The concrete implementation of these methods is left to the implementing
subclass of class Language.

It quickly became obvious that the good software engineering decisions for the third bullet
point also opened the door for alternative output languages. Therefore, we decided to pro-
vide two “layers” of the API. The outer, abstract layer offers all interesting functions to the
programmer, but uses an underlying inner, concrete layer to actually map the functions to
output commands. In this way, it is easy to implement support for an alternative output for-
mat such as SVG (Ferraiolo, 2003). The switching between output instances is decided when
the concrete instance of the Language Factory is created by providing one of the possible
implementing subclasses, as shown in Listing 1.

1 // Generate a new Language instance for content creation

2 // Parameter: Animation title, author, width, height

3 Language lang = new ConcreteLanguage("Quicksort Animation",

4 "Name of the author", 640, 480);

5 // Activate step control

6 lang.setStepMode(true);

Listing 1: Example for creating a new Language instance

3.1 Step control

The user can determine if all operations should be executed in sequence, or whether some
operations may be grouped together and will be performed in parallel. This is achieved by
turning the “step mode” on or off, respectively. If the step mode is turned on, a new step has
to be introduced by a call to the nextStep method in class Language, which can also be passed
an int value for a delay between consecutive steps, measured in milliseconds. An optional
String parameter is used for the hypertext-like “table of contents” shown in Figure 3.

3.2 Defining Graphical Objects

The API for creating graphical objects is based on the definitions used by AnimalScript and
the “standardized” XML of an ITiCSE 2005 Working Group (Naps et al., 2005), also found
in the XAAL system (Karavirta, 2005). Essentially, almost all objects require the following
creation parameters: location, value, name, display options and visual properties.

The location specifies the placement of the object and can be either absolute or relative
to an other object or object node. The value depends on the type of the object, and can for
example by an int array for an object of that type (see Listing 2 for an example of creating a
visual object). The display options can be used to declare the object as hidden (not visible)
or specify a delay after which the object should become visible. Finally, the visual properties
describe the outward appearance of the object, such as its color. The visual properties will
be examined in more detail in Section 3.3.

1 // Create a new int[] object (will normally exist before)

2 int[] arrayContents = new int[] { 1, 3, 7, 5, 2, 6, 8, 4 };

3 // Parameters: location, value, name, display opt., visual props.

4 IntArray array = lang.newIntArray(new Coordinates(10, 30),

5 arrayContents, "array", null, arrayProps);

Listing 2: Example for creating a new Graphical Object, here a visual int array

108 Fifth Program Visualization Workshop

The API supports a large set of graphical objects: points, squares, triangles, rectangles,
polygons, lines, polylines, circles and ellipses (including segments thereof), and text elements.
It also supports many of the most relevant data structures used in Computer Science, such as
graphs, arrays and matrices with a base type of int or String, code blocks including indenta-
tion, list elements with an arbitrary number of pointers, and three variants each of stacks and
queues (conceptual, list- and array-based). All objects can be created with a single method
invocation similar to lines 4-5 in Listing 2.

3.3 Defining Visual Properties

Apart from defining a graphical object, such as the IntArray shown in Listing 2, the user
should also be able to define the object’s visual appearance. The typical approach for this is
to use either constructor invocation arguments, for example passing in the color of the object,
or explicit API invocations to set the values after the “basic” object was created.

For many of the more complex objects, both of these approaches can be cumbersome due
to the following reasons:

• Passing in the concrete values to the constructor can result in a bad design or usage
issues. If all values are mandatory, that is, there is only one appropriate constructor,
the number of parameters needed may become very large. For example, the IntArray
in Listing 2 already has color values for its outline, elements, cell background, element
highlight and cell highlight, the latter two of which are used if the user’s attention is to
be drawn to certain elements or cells. A user who simply wants to create an IntArray
now has to worry about five colors (plus the font settings etc.) - or may leave them null,
which may or may not lead to other problems.

If the designer tries to help the user by allowing individual colors to be dropped from
the list, the API will quickly have a large set of different IntArray constructors, which
may also confuse users.

• The user may assign values to the five colors mentioned in the previous item by invoking
one API method per color. This leads to a rather broad API with many simple (and
similar) methods, as well as to about six additional method invocations - and thus, six
more lines of Java code - to get the colors and fonts “right”.

• Visual settings cannot easily be reused by either of the two previous approaches. For the
second approach, the user could write a method that calls the appropriate API methods
with the same settings. However, that still means additional work for the user.

We have therefore decided to follow an approach closer to Cascading Style Sheets. Here,
the user can define a given combination of visual attributes once, and then reuse it as often
as he likes. For example, to create ten text objects that have exactly the same visual settings,
the user would first describe the visual properties once, and then pass these visual properties
as a constructor parameter to the ten text objects. Listing 3 gives a brief example of how
the visual properties for the IntArray object in Listing 2 can be specified. Note that the
properties defined in Listing 3 are already used in Listing 2 in line 5.

1 // create array properties with default values

2 ArrayProperties arrayProps = new ArrayProperties();

3 // Redefine properties: border black, filled with gray

4 arrayProps.set(AnimationPropertiesKeys.COLOR_PROPERTY, Color.BLACK);

5 arrayProps.set(AnimationPropertiesKeys.FILLED_PROPERTY, true);

6 arrayProps.set(AnimationPropertiesKeys.FILL_PROPERTY, Color.GRAY);

Listing 3: Specifying visual properties (here, for array objects) once

Fifth Program Visualization Workshop 109

On creation of a new visual properties object, as shown in Listing 3, all possible properties
for the object are already set to a default value. Therefore, the user only has to overwrite
those settings that he wants to adjust. For example, the array properties actually include 11
different properties.

3.4 Animating Graphical Objects

Once a graphical object was defined, it can be animated. The supported animation methods
are invoked directly on the underlying graphical object. The parameters required for the
animation effects depend on the type of effect chosen. However, they will usually include the
following information:

• a method name for specifying subtypes of a given animation effect, as “translate #2”
used in Figure 1. For example, a color change may concern the array’s border or its fill
color. The method name specifies which of these is actually meant to change;

• an offset relative to the start of the current animation step, which is usually 0 to indicate
an immediate start;

• and a duration. Both offset and duration can be measured in animation frames or ms.

4 Example Animation Generated Using the Java API

Figure 3 shows an example of a generated animation. The window contains the standard
Animal controls for speed and zoom at the top. The animation can be navigated flexibly
in both directions and also includes a “kiosk mode”, which will display the animation step
by step. The user can also jump ahead in the animation by entering the target step or
dragging the slider shown on the bottom right. The window overshadowing the animation
display contains the labels assigned to the animation, allowing instant access to the associated
animation step. In the example, we started from step 59 which starts the merge operation of
the first four array elements, and have now reached step 65.

The graphical objects shown in Figure 3 include a boxed text for the title and two int
arrays defined similarly to Listing 2. The visual properties used for the arrays are identical
to those described in Listing 3. The array markers i, j, and k are directly installed on the
array. They can be moved to another index (using either a “jump” of no duration or a timed
“move”), and can also automatically update their position if a change in a cell value occurs,
for example by putting a larger number into an array cell.

The source code shown in the example animation is created with a set of API method
invocations. The code indentation can be specified separately for each line. Animal will
figure out the actual indentation to be used according to the font used for the code lines. The
code also highlights the current code line in a configurable color (here, violet).

Finally, the two “counter boxes” for the number of assignments and comparisons also use
the AnimalScript API. As there is no “counter box” feature in the API, we instead use a
filled rectangle for each box. Whenever an assignment or comparison is made, the associated
box is stretched by moving the end point by two pixels per assignment or comparison, as
stretching the box by a single pixel would be difficult to see on many larger displays.

Listing 4 shows an excerpt of the concrete code for performing the first two parts of the
merge process, when the sorted elements of the left and right subarray are copied into the
temporary array. We do not expect the reader to fully understand the code as it is portrayed
in this listing, but the main approach should hopefully be understandable. In line 1, we start
a new step that is also provided with the “merge array [l, r]” information shown in the list
of assigned labels. The parameters l, r indicate the current subarray bounds, while depth
represents the recursion depth and determines the number of spaces to indent the label.

110 Fifth Program Visualization Workshop

Figure 3: Screenshot from a generated animation

Fifth Program Visualization Workshop 111

Lines 3-4 (as well several other lines in the listing) adjust the counters for the number
of assignments and comparisons. In lines 3-4, these are for the initialization and condition
of the for loop in line 6-12. Inside the loop, the values from the “main” array array are
copied into the “helper” array bArray. The null parameters indicate that the effect happens
instantaneously without duration or delay. Lines 13 and 25 toggle the display of the current
code line from the first to the second and from the second to the final loop shown in Figure 3.

1 lang.nextStep(createMergeLabel(l, r, depth)); // provide a label!

2

3 incrementNrAssignments(); // i = l in init of foor loop

4 incrementNrComparisons(2); // i <=m, i < array.getLength() in for

5 // copy first subarray

6 for (i = l; i <= m && i < array.getLength(); i++) {

7 bArray.put(i - l, array.getData(i), null, null); // copy value

8 incrementNrAssignments(); // counts as one operation

9 bArray.unhighlightElem(i - l, null, null); // unhighlight

10 incrementNrAssignments(); // i++ in for loop

11 incrementNrComparisons(2); // comparisons in for loop

12 }

13 code.toggleHighlight("copyLeftside", "copyRightside");

14 lang.nextStep(); // change step

15

16 incrementNrAssignments(); // j = m + 1 in for

17 incrementNrComparisons(); // j <= r in for loop

18 for (j = m + 1; j <= r; j++) { // copy second subarray

19 bArray.put(r + m + 1 - j - l, array.getData(j), null, null);

20 incrementNrAssignments();

21 bArray.unhighlightElem(r + m + 1 - j - l, null, null);

22 incrementNrAssignments();

23 incrementNrComparisons();

24 }

25 code.toggleHighlight("copyRightside", "loop");

26 lang.nextStep(); // next step: merge in loop

Listing 4: A subset of the code used for MergeSort

5 API Evaluation

The API presented in this paper is currently used by roughly 120 different algorithm animation
content generators. To be fair, many of these generators only differ by nuances, such as the
language used for textual output or for program code (e.g., Java versus pseudo code). About
45 of these generators previously used a generation approach similar to the “interwoven” code
in Figure 2. Changing these to the API represented a fair amount of work, but was definitely
useful, as the modified code is now far more readable and also far shorter.

Currently, a set of students is working with the Java API in a lab about algorithm vi-
sualization. We expect to be able to provide more information about their experiences for
the final submission to the Workshop, and certainly for the presentation in Madrid, as our
summer term has just started two weeks before the submission deadline. The first feedback
is positive, claiming that is easy to start working with the API based on the initial English
slides we provide at the Animal home page (Rößling, 2008) under “Downloads”.

6 Extending the API to other output languages

Extending the API to other output languages is very easy. The programmer first creates a
new Java package for the new output language. A new base factory implementation of the
abstract Language Factory then has to be created and implemented. Tools like Eclipse can
help by automatically filling in the methods that have to be implemented; this is currently a
set of 26 Factory methods for the objects listed in Section 3.2.

112 Fifth Program Visualization Workshop

The implementation of the Factory methods then usually requires the creation of additional
classes representing the created object, for example a SVGIntArray representing an int[] in
SVG. This class only has to map the existing IntArray object into SVG; it does not have to
provide any internal representation of the array or other “business logic”.

The implementation for the AnimalScript language currently consists of 30 Java classes
with a total of 6,336 lines (including all empty lines, comments, package and import state-
ments). By far the largest class is the base Factory class with about 900 lines, many of which
are either blank (87) or contain import (90) statements or JavaDoc comments (344). When
we also disregard the declaration of methods, less than 300 lines of actual code are left.

7 Summary and Future Work

We have presented the basic design and use of the AnimalScript Java API. The API is a
large help in separating the algorithm from the visualization code. It is easy to use, once the
programmer has understood the concept of the visual properties, and highly expressive.

In the future, we want to extend the API to other output languages, especially the XML
code defined by the ITiCSE 2005 Working Group (Naps et al., 2005), also used in the XAAL
system (Karavirta, 2005). Other target formats include SVG and potentially ActionScript
(used for Adobe Flash). We would also like to offer the API to any interested party; it can
be freely downloaded (Rößling, 2008). This especially concerns AV content creators and the
authors of other systems, who may be interested in adopting the API.

References

Jon Ferraiolo. Scalable Vector Graphics (SVG) 1.1 specification. http://www.w3.org/TR/
SVG, September 2003.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Ville Karavirta. XAAL - Extensible Algorithm Animation Language. Master’s thesis, De-
partment of Computer Science and Engineering, Helsinki University of Technology, 2005.

Thomas Naps, Guido Rößling, Peter Brusilovsky, John English, Duane Jarc, Ville Karavirta,
Charles Leska, Myles McNally, Andrés Moreno, Rockford J. Ross, and Jaime Urquiza-
Fuentes. Development of XML-based Tools to Support User Interaction with Algorithm
Visualization. SIGCSE Bulletin inroads, 36(4):123–138, December 2005.

Guido Rößling. Animal2 Home Page. WWW: http://www.algoanim.info/Animal2, 2008.

Guido Rößling and Peter Schroeder. Animalipse - An Eclipse Plugin for AnimalScript. In
Proceedings of the Fifth Program Visualization Workshop, Universidad Rey Juan Carlos,
Madrid, Spain, page (in print), July 2008.

Guido Rößling, Felix Gliesche, Thomas Jajeh, and Thomas Widjaja. Enhanced Expressiveness
in Scripting Using AnimalScript V2. In Proceedings of the Third Program Visualization
Workshop, University of Warwick, UK, pages 15–19, July 2004.

Fifth Program Visualization Workshop 113

A Design of Automatic Visualizations for Divide-and-Conquer
Algorithms

J. Ángel Velázquez-Iturbide, Antonio Pérez-Carrasco, Jaime Urquiza-Fuentes
Departamento de Lenguajes y Sistemas Informáticos I, Universidad Rey Juan Carlos,

C/ Tulipán s/n, Móstoles 28933, Madrid, Spain

angel.velazquez@urjc.es

Abstract

The paper addresses the design of program visualizations adequate to represent divide-
and-conquer algorithms. Firstly, we present the results of several surveys performed on
the visualization of divide-and-conquer algorithms in the literature. Secondly, we make
a proposal for three complementary, coordinated views of these algorithms. In summary,
they are based an animation of the activation tree, an animation of the data structure,
and a sequence of visualizations of the substructures, respectively.

1 Introduction

An informal distinction is commonly accepted between program visualization and algorithm
animation. The former term describes external representations that are closely tight to pro-
gram source code. The latter term refers to external representations of the abstract behaviour
of a piece of program, typically an algorithm. Given the lower abstraction level of program
visualizations, they are frequently generated automatically, whereas the higher abstraction
level of algorithm animations forces human intervention.

As effort is one of the main reasons for instructors not to be using visualization software
in education, it is worthwhile to further explore different directions for program visualization
(Naps et al., 2003). We have addressed a line of research consisting in generating program
visualizations based on their underlying algorithm design techniques, e.g. divide-and-conquer
or backtracking. Consequently, a student who wants to understand and analyze the behaviour
of an algorithm of a common design technique could generate expressive, automatic visual-
izations of the algorithm.

We have designed an implementation framework (Fernández-Muñoz et al., 2007) to develop
several visualization systems, one per design technique. To illustrate the feasibility of this
framework, a first system was implemented to visualize recursion, called SRec (Velázquez-
Iturbide et al., 2008). Now, we are addressing the design of a visualization system for a
proper algorithm design technique, namely divide-and-conquer.

The goal of this paper is to present the design of visualizations adequate for the divide-
and-conquer technique. In the second section, we present the result of several studies we
performed on the visualization of divide-and-conquer algorithms in the literature. The third
section contains our proposal, consisting in three complementary, coordinated views. Finally,
we summarize our conclusions and future work.

2 A Survey of Visualizations of Divide-and-Conquer Algorithms

In this section, we show the results of several studies we performed on visualizations of divide-
and-conquer algorithms.

We assume that the definition of divide-and-conquer algorithms is well known, but we
list here the terms used in the rest of the paper. A problem solved by divide-and-conquer is
decomposed into subproblems. They are recursively solved, resulting in subsolutions whose
combination gives place to the solution of the original problem.

Divide-and-conquer algorithms often traverse and manipulate a data structure. Each
subproblem is constrained to a part of the structure, i.e. a substructure. We only deal here

114 Fifth Program Visualization Workshop

Figure 1: Activation tree for mergesort of {0,4,2,9,6,8,3,1,5,7} displaying array contents and
indices

with one- and two-dimensional arrays, thus we often use the terms (sub)arrays, (sub)vectors
and (sub)matrices. The most common and efficient way of delimiting subarrays is by using a
range, defined with a lower and a higher index.

2.1 Visualizations of Recursion

Divide-and-conquer algorithms are a particular case of recursive algorithms. As a consequence,
in a first approach, we tried to make use of visualizations for recursive algorithms. These
visualizations are well known in CS: activation (or recursion) trees, the execution stack, traces,
and multiple copies (of either code or variables). These visualizations are not equally effective
for lineal and for multiple recursive algorithms. In particular, activation trees are more useful
to display the behaviour of multiple recursive algorithms, e.g. divide-and-conquer algorithms.

Activation trees have limitations for divide-and-conquer algorithms. They are most effec-
tive for algorithms with a few, simple parameters or results. However, they are not as effective
for larger data structures. The following two figures illustrate this inadequacy for mergesort.
Both figures have been generated with SRec (Velázquez-Iturbide et al., 2008). The system al-
lows the user to select the parameters or results to display; when a method does not return any
value but produces side-effects, the original and final value of the parameters are displayed.
It also has several facilities (zoom+panning, overview+detail) to handle large-scale activation
trees. Finally, a user-defined colouring scheme can be used to differentiate input/output val-
ues, and the status of a call in the global process (executed, active or pending). In spite of
all of these facilities, the resulting visualizations are not satisfactory.

Fig. 1 shows how the textual representation of arrays produces long nodes and therefore
wide and shallow activation trees, difficult to browse and comprehend. In addition, the display
of the complete array in every recursive call makes difficult identifying its corresponding
subproblem and subsolution. Fig. 2 shows that omitting arrays from the nodes produces a
more compact display, but changes of the array contents during the sorting process are not
visible.

2.2 Visualizations in Algorithm Animations

Algorithm courses contain many divide-and-conquer algorithms, mainly mergesort and quick-
sort. Consequently, many creators of animation systems have developed animations for these
algorithms. We have reviewed and analyzed the display of quicksort animations contained in

Fifth Program Visualization Workshop 115

Figure 2: Activation tree for mergesort of {0,4,2,9,6,8,3,1,5,7} only displaying array indices

the reference books by Diehl (2007) and Stasko et al. (1998). Diehl (2007) shows one display
(figs. 1.5 and 4.4) and Stasko et al. (1998) contains a higher number (pp. 41, 42, 91, 151, 158,
254, 374, 377, 379). This study reveals that some graphical representations are not useful
because of several reasons:

• Some generic graphical representations are too poor. For instance, just displaying the
data structure to manipulate is not expressive enough (see p. 42).

• A representation of a vector where each cell is displayed proportional to its size only is
useful for certain problems (e.g. sorting). We find representations of cells as vertical
bars (figs. 1.5 and 4.4), horizontal bars (pp. 374, 377) or in a “dots view” (pp. 41, 151,
379).

However, these animations also contain elements that can be successfully generalized to
other divide-and-conquer algorithms:

• They use boxes to enclose the subarray handled by each recursive call (figs. 1.5 and
4.4).

• They classify the elements with respect to their status in the algorithm history by using
shapes (pp. 41, 91, 158) or colours (figs. 1.5 and 4.4, pp. 91, 158, 374).

• The partition tree (pp. 41, 91, 158) is a variation of an activation tree that successfully
combines recursion and vector representations. In summary, it consists of a tree isomor-
phic to an activation tree, where an element of the vector is displayed either as a node
of the tree (when it is at its final position) or as a part of a subvector (when it has not
been processed yet).

A different analysis of the visualization of recursive algorithms can be found at Stern and
Naish (2002). They propose differentiating three kinds of algorithms, depending on how they
handle a data structure (namely, algorithms that modify, traverse or construct it), rather than
considering their recursion scheme. However, it is not obvious whether their visualizations can
be generalized: the visualizations they propose contain vectors for the first class of algorithms,
and trees for the other two classes. The visualization included in the article for the former class
corresponds to a divide-and-conquer algorithm (namely, quicksort). It displays horizontally
the vector and underlies it with horizontal bars that mirror recursive calls.

2.3 Visualizations in Textbooks

A comprehensive study on the visualization of divide-and-conquer algorithms must consider
representations used by CS instructors. Consequently, we made a study of some of the most

116 Fifth Program Visualization Workshop

prestigious textbooks on design and analysis of algorithms (Fernández-Muñoz and Velázquez-
Iturbide, 2006). The selection was necessarily arbitrary, but we consider it was representa-
tive of high-quality textbooks on algorithms (Aho et al., 1983; Alsuwaiyel, 1999; Baase and
Gelderl, 1988; Brassard and Bratley, 1996; Cormen et al., 2001; Gonnet and Baeza-Yates,
1991; Goodrich and Tamassia, 2001; Horowitz and Sahni, 1978; Johnsonbaugh and Schaefer,
2004; Levitin, 2003; Manber, 1989; Parberry, 1995; Sahni, 2000; Weiss, 1999)

We summarize our findings, after discarding visualizations specific of any problem:

• It is common to include a visualization illustrating the inductive definition of the re-
cursive algorithm by displaying its elements: problem, subproblems, subresults, and
result.

• It is common to include a visualization of the activation tree. There are many variants
in its graphical representation:

– Visualize either a single tree or two parallel trees, where the second one illustrates
the auxiliary operation (e.g. partitioning in quicksort).

– Display either the activation tree or a sequence of visualizations of the data struc-
ture. Notice that the latter is an implicit tree, since it corresponds to its traversal.

– Display either the delimiting indices or the contents of subarrays.

– Display either the original or the final values contained in a data structure.

– Display the activation tree in an either ascending or descending layout. We also find
the join display of both, representing the advance and return phases of recursion.

• It is common to include a visualization of the data structure, complemented with some
representation of the partitioning performed by the divide-and-conquer algorithm:

– By means of nested boxes enclosing subarrays.

– As a sequence of successive states of the substructures handled by the successive
calls. Each substructure is either aligned according to its delimiting indices or laid
out isomorphic to the recursion tree.

3 A Proposal for Automatically Generated Visualizations of Divide-and-
Conquer Algorithms

Based on the findings of the previous section, we propose to three (coordinated) views of
the behaviour of divide-and-conquer algorithms. We have imposed an additional requirement
on our visualizations: they must be applicable to both one- and two-dimensional arrays, i.e.
vectors and matrices.

• An animation based on the activation tree. Each node is complemented with a visual-
ization of the substructure it focuses on.

• An animation based on the data structure. It is complemented with a schematic diagram
of its partitioning by the algorithm.

• A sequence of visualizations of the substructures.

We elaborate these views in the following subsections.

Fifth Program Visualization Workshop 117

Figure 3: Visualization for mergesort of {0,4,2,9,6,8,3,1,5,7} based on the activation tree

Figure 4: Visualization for transposition based on the activation tree

3.1 Animation Based on the Recursive Process

Fig. 3 shows an example of this view. Opposed to Fig. 1, each array is visualized once in each
node. In addition, the application of a user-defined colouring scheme to the array allows to
determine at a glance which subarray is the focus of the recursive call, as well as whether it is
the subarray state at the entry or exit of the call. For the former issue, we recommend using
different tones of the same colour, and for the second one, different colours. In the figures,
the blue and red colours are respectively used to represent input and output values.

This view can be applied to matrices as well. Fig. 4 corresponds to a divide-and-conquer
algorithm transposing a square matrix (an inefficient one!).

3.2 Animation Based on the Data Structure

This view provides a discrete animation of the successive states of the data structure to
manipulate. It displays vectors and matrices in a conventional format. A set of bars is
displayed below, that mirror the recursive process by underlying the subarray delimited by
each recursive call. Fig. 5 shows an example of this view.

A colouring scheme is applied to the underlying bars, as well as to their associated subar-
rays. A first colour (red in Fig. 5) is used to mark recursive calls whose execution is over, as
well as their corresponding subvectors. A second colour (blue in Fig. 5) is used for recursive
calls whose execution is pending, as well as their corresponding subvectors. Tones of the two

Figure 5: Visualization for mergesort of {0,4,2,9,6,8,3,1,5,7} based on the data structure

118 Fifth Program Visualization Workshop

Figure 6: Visualization for transposition based on the data structure

colours are used to represent the distance of each call in the activation tree to the active call.
The active call is always coloured light, and more distant nodes are coloured darker. In Fig.
5, the left part of the array is already sorted, being the active call focused at the subarray 3,8
and about to exit.

This view can be applied to matrices as well. The set of horizontal bars is replaced by a
set of nested boxes cueing submatrices. Fig. 6 illustrates this for the algorithm to transpose
a square matrix. Here, the algorithm only has completed three base cases and is focused on
the fourth one.

3.3 Sequence of Visualizations of the Data Structure

A third view displays a sequence of visualizations of the data structure, displayed top-down.
Every time a recursive call is invoked, a new visualization of the array is displayed at the
bottom of this view. In order to highlight the recursive process, each line only contains the
subarray focused by its associated call, indented according to its delimiting indices.Every time
a recursive call exits, a visualization of the resulting subarray is displayed below the original
subarray displayed on call entry. Again, the use of colours allows differentiating them. Fig.
7a shows this view for the mergesort algorithm. The left part of the array is already sorted
and a call has been made to sort its right half.

The main advantage of this view is that it allows generating a visualization that mirrors the
inductive definition of the recursive algorithm. Fig. 7b illustrates this feature for mergesort.
By selecting the animation control to jump over a recursive call and hiding the visualization
of its underlying displays, the resulting display just consists of the original array, the two
subarrays focused by the two recursive calls, the output subarrays of these recursive calls, and
the final array.

4 Conclusions and Future Work

Custom visualizations for particular algorithms, as shown in algorithm animations, can be the
most expressive. However, the effort necessary for manual generation of each particular ani-
mation is prohibitive. Therefore, we argue for using program visualizations as an alternative,
effortless approach.

Fifth Program Visualization Workshop 119

(a) (b)

Figure 7: Full (a) and simplified (b) sequence of visualizations for mergesort of
{0,4,2,9,6,8,3,1,5,7}

We have shown two results in this paper. Firstly, we have presented the results of exam-
ining visualizations of recursion as well as divide-and-conquer visualizations available at the
literature. Secondly, we have proposed three program visualizations for divide-and-conquer
algorithms. Two of them are respectively based on the animation of activation trees and of
the data structure; both are mixed in the sense of displaying code and data elements. A
third visualization is a sequence of substructures, and is capable of illustrating the inductive
definition of the algorithm.

We have implemented a working prototype of the design presented here. However, more
work is necessary to become a fully operational system. Usability evaluations performed by
experts (i.e. instructors) and in sessions with students are important to assess their validity,
as described in (Velázquez-Iturbide et al., 2008) for the SRec system.

References

V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Algorithms. Addison Wesley,
1983.

M.H. Alsuwaiyel. Algorithms Design Techniques and Analysis. World Scientific, 1999.

S. Baase and A. Van Gelderl. Computer Algorithms. Addison Wesley, 1988.

G. Brassard and P. Bratley. Fundamentals of Algorithmics. Prentice-Hall, 1996.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. The MIT Press,
2nd edition, 2001.

120 Fifth Program Visualization Workshop

S. Diehl. Software Visualization. Springer-Verlag, 2007.

L. Fernández-Muñoz and J.Á. Velázquez-Iturbide. A study on the visualization of algorithm
design techniques (in spanish). In M.Á. Redondo, C. Bravo, and M. Ortega, editors, VII
Congreso Internacional de Interacción Persona-Ordenador, pages 315–324, 2006.

L. Fernández-Muñoz, A. Pérez-Carrasco, J.Á. Velázquez-Iturbide, and J. Urquiza-Fuentes. A
framework for the automatic generation of algorithm animations based on design techniques.
In E. Duval, R. Klamma, and M. Wolpers, editors, Creating New Learning Experiences on
a Global Scale - EC-TEL 2007, volume 4753 of LNCS, pages 475–480, 2007.

G.H. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data Structures in Pascal and
C. Addison-Wesley, 2nd edition, 1991.

M.T. Goodrich and R. Tamassia. Data Structures and Algorithms in Java. John Wiley &
Sons, 2nd edition, 2001.

E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms. Pitman, 1978.

R. Johnsonbaugh and M. Schaefer. Algorithms. Pearson Prentice Hall, 2004.

A. Levitin. The Design and Analysis of Algorithms. Addison-Wesley, 2003.

U. Manber. Introduction to Algorithms. Addison-Wesley, 1989.

T.L. Naps, G. Roessling, V. Almstrum, W. Dann, R. Fleischer, C. Hundhausen, A. Korhonen,
L. Malmi, M. McNally, S. Rodger, and J.Á. Velázquez-Iturbide. Exploring the role of
visualization and engagement in computer science education. SIGCSE Bulletin, 35(2):131–
152, 2003.

I. Parberry. Problems on Algorithms. Prentice Hall, 1995.

S. Sahni. Data Structures, Algorithms and Applications in Java. McGraw-Hill, 2000.

J. Stasko, J. Domingue, M.H. Brown, and B.A. Price, editors. Software Visualization. The
MIT Press, 1998.

L. Stern and L. Naish. Visual representations for recursive algorithms. In 33th SIGCSE
Technical Symposium on Science Education, SIGCSE 2002, pages 196–200, 2002.

J.Á. Velázquez-Iturbide, A. Pérez-Carrasco, and J. Urquiza-Fuentes. Srec: An animation
system of recursion for algorithm courses. In 13rd Annual Conference on Innovation and
Technology in Computer Science Education, ITiCSE 2008, page In press, 2008.

M.A. Weiss. Data Structures and Algorithm Analysis in Java. Addison-Wesley, 1999.

Fifth Program Visualization Workshop 121

A First Set of Design Patterns for Algorithm Animation

Guido Rößling
CS Department, TU Darmstadt

Hochschulstr. 10
64289 Darmstadt, Germany

roessling@acm.org

Abstract
Design Patterns are extremely helpful in preventing programmers from “reinventing

the wheel”. However, the algorithm animation area does not yet seem to have any Design
Patterns, although there are several design issues that have to be resolved in many systems.
We present two Design Patterns that address two central points in flexible algorithm
animation systems: reverse playing and conceptual uncoupling to allow for easy extension.

1 Introduction

Design Patterns in the Computer Science context go back to the book by Gamma et al.
(1995) which mapped the original concept of the architect Christopher Alexander to software
development. The book provides approaches for solving problems that may come up in several
different applications by following the same basic “idea” or approach, typically using a set of
cooperating classes.

For algorithm visualization (in the following, abbreviated as AV), we could not find a
“real” description of design patterns in use, although the problems faced by many systems
are also similar. For example, users will often find it interesting or even important to be able
to step backwards through the visualization (Anderson and Naps, 2001), without (for them)
arbitrary limitations, such as a limited undo stack. Additionally, the process of stepping
backwards should be reasonably fast.

Since no AV system is likely ever to be really “complete”, means for introducing extensions
or reconfigurations need to be provided. An interested developer should find it relatively easy
to include a new primitive or data structure, provide a new animation effect or state transition,
or do both. However, this should be possible without forcing the developer to take care of
everything at the same time. Additionally, the developer may not have—or even want to
have—a deeper understanding of the underlying system. Therefore, he or she should not be
forced to modify existing components, as this decreases the motivation to “provide just a
small change”, and also increases the risk of making parts of the systems unusable.

In this paper, we define two initial AV patterns, in the hope that they will serve as a first
“stepping stone” for the definition and refinement of additional AV-related design patterns.

Section 2 briefly summarizes the main elements of design patterns. Section 3 presents a
pattern for easy navigation in both directions without the need of an undo stack. Section 4
introduces a pattern for enabling the extension of different aspects of an AV system without
touching other parts. Section 5 summarizes the patterns in this paper and outlines future
AV-related pattern research aspects.

2 An Extremely Brief Description of Design Patterns

Design patterns describe problems that occur many times in different parts of our environment.
By describing the core of the solution to the problem, the same basic approach can be used to
solve the problem, although the actual code is most likely different each time (Gamma et al.,
1995, p. 2). A Design Pattern, as described in the basic book by Gamma et al. (1995), has
five essential elements:

The pattern name is used to refer to the pattern. It provides a common understanding of
what is referred to, assuming that all readers are familiar with the given pattern.

122 Fifth Program Visualization Workshop

The intent describes the intention of the pattern in a single sentence.

The problem is a description of the situation that is addressed by the pattern.

The solution describes the components that can be used to solve the problem. It does not
describe a concrete implementation, but rather the elements that are used to reach a
concrete implementation, to allow for easier reuse and adaptation.

The consequences describe the results and trade-offs of applying the pattern. While the
use of a pattern may increase the flexibility of the software, it may also affect the runtime
or the amount of memory needed.

The book by Gamma et al. (1995) lists many other aspects of a pattern that can be listed,
such as the motivation and sample code. However, we will not strictly adhere to the format
for the sake of clarity and brevity.

We will use the pattern name as the name for the sections. The other elements will appear
as subsections.

3 Reverse by Fast Forward

3.1 Intent

Reverse by Fast Forward supports flexible unbounded bidirectional navigation.

3.2 Problem

During a visualization of an algorithm, a user may become confused at some stage. Addition-
ally, the visualization of a user-written algorithm may show a bug that needs to be tracked
backed to its origin. Both situations benefit from the ability to easily step back to the previous
step or steps. Here, a step is taken to be a closed set of operations that happen at the same
basic time and represent complete actions. Thus, one move of an object along a line will
always be part of exactly one step, even if it is rendered using a set of intermediate animation
frames. However, the next step may contain another move of the same object.

The standard approach of supporting stepping backwards is to keep an undo stack of
previous visualization states. In some systems, this may be a stack of static images, while
other systems need to store a complete object representation. Both situations are usually
limited by the amount of memory reserved for the stack, and may be further reduced by the
size of the shown content. For example, an animation that covers 200 animation steps may
require the storing of 199 previous step states for undo. If intermediate animation frames
are to be stored, the number rises very quickly. The same is true if the undo stack tries to
mirror the user’s movement through the animation, and thus may have to store the same
intermediate state multiple times as the user steps back through the animation.

The importance of being able to navigate back to a well-understood step in the display is
also discussed in research papers (Rößling and Naps, 2002; Rößling and Naps, 2002). It is,
however, not trivial to find a good solution for fast and arbitrary navigation, as shown by the
statement that “efficient rewind [is] one of the most ‘open questions’ in AV” (Anderson and
Naps, 2001).

3.3 Solution

We use a technique called “reverse by fast forward”, a term coined in a discussion between
the author and Amruth Kumar during a SIGCSE session break some years ago.

The main limitations of the classical undo stack have been described above: it may reach
the fixed memory limit quickly, consumes much memory, and may redundantly store the
same set of objects in different positions. Our proposal may seem counter-intuitive at first:

Fifth Program Visualization Workshop 123

we navigate backwards by quickly moving forwards from a well-defined position in the AV
contents. A similar approach is also used in reverse debugging and checkpointing (Boothe,
2000).

For this approach to work, the following conditions must be met:

• The content must have a certain structure, such as separate steps, to allow for a mean-
ingful definition of “current” and “previous step”, as well as for the “start” of the
contents.

• The objects and transformations must be encoded in a way that allows executing them
multiple times, always producing the same results. In practice, it is enough if a copy of
the operations is stored even after they have been executed. “Execute and forget”-like
operations, such as in the AV system JAWAA (Akingbade et al., 2003), which parse the
current command, execute it, and then forget about it, are not suited for this approach.

• Two sets of objects must be stored: the original objects as they were initially defined
in the animation, and one set of clones of these objects. Thus, the approach takes twice
as much memory for storing objects as the normal approach would require.

• The transformation of the graphical objects can be visualized by the system, but can
also be executed “quickly” without executing any visualization code.

Instead of executing a given operation or animation step on the original objects, the system
will perform the following steps:

1. Determine the animation step the user wants to reach.

2. Ensure that the chosen step actually exists. In the case of manual step input, the user
might provide a step number that does not exist, or may navigate forwards beyond the
end or backwards beyond the start of the animation. If the chosen step does not exist,
stop at this stage.

3. Clone all original graphical objects and place them in an appropriate data structure,
such as a hashtable or list.

4. For all steps between the initial state and the target step, quickly perform all transfor-
mations on the cloned graphical objects without visualizing the effects.

5. Once the target step is reached, resume normal operation.

In most cases, executing the actual transformations on the objects without creating any
visualization contents or updating the display will be much faster than the visualization.
Practical experience with the Animal system (Rößling and Freisleben, 2002) shows that the
gap between pressing the “go backward” or “go forward” button and the update of the display
is usually not or only barely noticeable, even for large animations.

To increase the performance of the display, the clones from the previous animation step
may also be stored. If the user requests the next step to be displayed, the first four steps of
the item list can be skipped and execution can directly continue. Additionally, snapshots of
steps at certain intervals (e.g., every ten steps) can also be taken to support faster navigation.
However, this will also increase the amount of memory needed, and may severely harm the
animation speed if the user is actively editing the animation, forcing the system to continu-
ously update the “snapshots” - a situation that does not occur in the other application areas
(Boothe, 2000).

Arbitrary animation steps can also be dynamically performed in reverse direction if the
animation effects are coded appropriately. This is used in the Animal AV system (Rößling

124 Fifth Program Visualization Workshop

and Freisleben, 2002) to allow fully flexible bidirectional navigation even inside steps, letting
“objects fly backwards”.

As the pattern requires only the storage of the original and the cloned objects, no UML
diagram is given.

3.4 Consequences

The Reverse by Fast Forward pattern has a set of consequences:

• The users can always jump to any arbitrary point in the animation. They are not
restricted to the next or previous step, predefined points (such as start, end) or a
limited number of steps to be reversed.

• Even object-destroying operations, such as scaling by a factor of 0 or multiplying by 0
can be “reversed”, as the previous state of the object is retained through the cloning
approach.

• The amount of memory used by the application increases, as each graphical object has
to be stored twice. As the clones have to be prepared at each step (see 3. in the list
above), this may also lead to increased memory fragmentation and garbage collection,
which can impact the runtime.

4 Request Handler

4.1 Intent

Request Handler decouples animation effects from graphical objects, making both more flex-
ible and easier to extend.

4.2 Problem

In AV and regular graphics systems, the user typically has (at least) two different abstrac-
tions: the graphical objects and the animation or editing effects. Graphical objects may be
primitive, such as a text or square, or complex, such as an array or a tree. They may also
encapsulate special semantics for some operations, or provide object-specific behavior. For
example, changing the fill color of a circle representing a traffic light to red is different from
just coloring a “normal” circle; swapping elements requires an appropriate visual rendition to
be easily visible to the end-user. Typically, the graphical objects are responsible for storing
their current state and can be requested to paint themselves. Animation effects are responsi-
ble for changing the graphical objects, optionally also using timing specifications such as the
time to wait before the effect starts or its total duration.

Interested developers should be able to implement a new graphical object without touching
the existing animation effect. They should also be able to add a new animation effect without
having to modify the existing graphical objects, and should be able to avoid providing a
hard link between these entities. Finally, existing animation effects that differ only in small
aspects should be modifiable without having to touch the animation effect. For example, if
an animation effect for changing a color exists, there should be no need to implement a “fill
color” change effect, or even modify the existing animation effect.

A standard approach is to incorporate a design such as MVC (Model, View, Controller),
where the Model is the graphical object, the Controller role is assumed by the animation
effect, and the View is the graphical rendition of the object. However, this does not provide
the necessary uncoupling described above.

The intention of the described pattern is also similar to the “expression problem” described
by Odersky and Zenger (2005). However, their approach (and other related approaches)
requires special mixin features that are not available in Java. Related other approaches as

Fifth Program Visualization Workshop 125

in (Torgersen, 2004) require Java generics, and thus an explicit implementation in separate
classes.

4.3 Solution

Use a Request Handler class to intercept the direct interactions between graphical objects
and transformation effects, as shown in Figure 1. Here, the ActualModel entity represents
the graphical object. It is aware of its current state and can therefore answer requests by the
associated RequestHandler.

Figure 1: Request Handler architecture

The Modifier in Figure 1 is the animation effect. It needs to be aware of the operations
that can be performed on the selected graphical object. For example, a generic “color changer”
animation effect should not offer a “fill color” change operation for unfilled objects, such as
texts, points or lines.

Finally, the RequestHandler acts as an intermediate object between the two entities. It
can be further refined by subclasses of HandlerExtension. The RequestHandler offers only
four methods:

addExtensionMethodsFor looks for existing extension methods that were implemented in
one of the (possibly multiple) HandlerExtension objects and adds them to the Vector
returned by getMethods.

getMethods returns the Vector of all possible concrete transformations for the combination
of ActualModel and parameter passed in.

insertHandlerExtension is invoked to add a new HandlerExtension.

propertyChange is invoked by the Modifier whenever a new animation stage has been
reached.

Note that of the four methods in the RequestHandler interface, only two are actually
concerned with Request Handling, while the other two offer extension support.

Negotiating the change of a given property now works as follows. For the sake of clarity,
we assume that the user wants to change the fill color of a circle object, and that both the
ActualModel circle and the Modifier color changer already exist:

1. The Modifier invokes getMethods(myCircle, x), where x is a parameter describing the
property to be changed. In our example, this can be any arbitrary java.awt.Color
instance.

2. The RequestHandler detects the underlying transformation type, here a color changer,
due to the Color parameter passed in.

126 Fifth Program Visualization Workshop

3. The RequestHandler queries the ActualModel for its current state. In this way, the
handler request can detect whether the circle is filled and can therefore change both its
outline and fill color, or whether only the outline color can be adapted.

4. The request handler returns a Vector of appropriate operation names to the Modifier,
allowing the user to choose one. In our example, the Vector may contain the operation
names “color”, “fill color”, and “color + fill color”.

5. At some later time, the actual effect is invoked. The Modifier determines the current
state based on the initial state (the original fill color), the target state (the target
fill color) and the current time (what percentage of the effect has been passed), and
interpolates the result. This changed value is passed to the request handler using the
propertyChange method together with the ActualModel instance. In our example, the
value is converted into an interpolated color along the RBG line between the original
and desired target color, according to the percentage of the color change effect that has
currently been reached.

6. The request handler extracts the target state and the transformation information from
the PropertyChangeEvent passed in, which encodes the name of the “property” to be
changed as well as its old and new value. It then maps this change into a set of (often
nearly trivial) operations on the ActualModel. For example, if the method name is
“color”, it will call the graphical object’s setColor(c) method, and for “fill color”, it will
call setFillColor(c).

The Request Handler is conceptually similar to the Adapter (Gamma et al., 1995, p. 139)
and Mediator (Gamma et al., 1995, p. 273) design patterns, but differs in a set of key points.

4.4 Consequences

The Request Handler pattern has the following consequences:

• The ActualModel classes are decoupled from the Modifier classes. In our example, this
means that the graphical objects do not need to be aware of animation as a dynamic
change of their internal state. They simply respond to requests to change their internal
state (for example, by changing the fill color), and repaint themselves when prompted.
Additionally, the animation effects are unaware of the actual objects they modify, and
do not need code for handling specific object types.

• The central methods getMethods and propertyChange are usually trivial to implement.
The first needs to figure out, based on the transformation type, what set of operations
are possible for the given concrete ActualModel. This is usually very straightforward
to implement. The latter method receives both the transformation name generated in
getMethods, the ActualModel to work on, and the current and target value. Mapping
this to appropriate operations on the ActualModel is again usually very simple. For the
“fill color” color changer, this operation requires the following steps: recognize that the
operation is of a “color change” type; extract the current and target colors from the
PropertyChangeEvent parameter; extract the method name (“fill color”); based on the
method name, decide to call the setFillColor model on the ActualModel passed in with
the target color.

• As the ActualModel reference is always passed in where it is needed, the RequestHandler
can be realized as a Singleton (Gamma et al., 1995, p. 127) for each graphical object
class. This is done in the Animal AV system.

• Using the HandlerExtension mechanism, developers can easily add new transformation
effect names without needing to modify the code of the original RequestHandler itself.

Fifth Program Visualization Workshop 127

• The implementation of the addExtensionMethodsFor and insertHandlerExtension meth-
ods can be delegated to a superclass of the actual RequestHandler instances, bringing
the number of methods to implement down to two per Request Handler.

• If a new graphical object has been implemented, the developer only needs to add a
Request Handler for this object type. All transformation methods supported by the
Handler are then directly usable for the new graphical object - without modifying the
code of any transformation object.

• If a new transformation effect has been implemented, the developer has to modify only
those Request Handlers that should be able to support the new effect. The effect is then
directly usable on the graphical objects without needing to modify their code.

• If a new transformation subtype for a given graphical object shall be supported, the
developer only has to add appropriate code to the getMethods and propertyChange
methods. No change of the transformation effect or graphical object classes is necessary.
The developer can also put the changes into a new HandlerExtension and register this
- in this case, no existing code is touched at all.

• An additional class (the Request Handler) has to be added for each graphical object.

5 Summary and Future Research

In this paper, we have presented two design patterns for AV-related systems. The Reverse
by Fast Forward can be used to support efficient bidirectional navigation in AV materials. It
is also applicable to other materials that match the requirements presented in Section 3 and
very easy to implement. The slight delay in execution resulting from the approach is in our
experience not or only barely noticeable even when running on older hardware.

The Request Handler pattern is used to decouple graphical objects and transformations
thereon. It allows the developer to implement new graphical objects without needing to modify
existing transformations, or to provide new transformations without modifying the implemen-
tation of the graphical objects. After becoming familiar with the underlying concepts, the
Request Handler has proven to be highly helpful.

Both patterns have been in active use in the Animal AV system for several years. While
grasping them is usually difficult at first for our students implementing new elements for the
system, they see the benefits during the implementation phase.

In the future, we hope that other AV researchers will be willing to gather their “best
practice” knowledge in the form of design patterns. This shall ultimately help other developers
of systems to incorporate tried and proven techniques, and may in the long run even make
data exchange between AV systems easier.

References

Ayonike Akingbade, Thomas Finley, Diana Jackson, Pretesh Patel, and Susan H. Rodger.
JAWAA: Easy Web-Based Animation from CS 0 to Advanced CS Courses. In Proceedings
of the 34th ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE
2003), Reno, Nevada, pages 162–166. ACM Press, New York, 2003.

Jay Martin Anderson and Thomas L. Naps. A Context for the Assessment of Algorithm Visual-
ization System as Pedagogical Tools. First International Program Visualization Workshop,
Porvoo, Finland. University of Joensuu Press, pages 121–130, July 2001.

Bob Boothe. Efficient algorithms for bidirectional debugging. In PLDI ’00: Proceedings of
the ACM SIGPLAN 2000 conference on Programming language design and implementation,
pages 299–310, New York, NY, USA, 2000. ACM. ISBN 1-58113-199-2. doi: http://doi.
acm.org/10.1145/349299.349339.

128 Fifth Program Visualization Workshop

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Martin Odersky and Matthias Zenger. Independently extensible solu-
tions to the expression problem. In Proc. FOOL 12, January 2005.
http://homepages.inf.ed.ac.uk/wadler/fool.

Guido Rößling and Bernd Freisleben. Animal: A System for Supporting Multiple Roles in
Algorithm Animation. Journal of Visual Languages and Computing, 13(2):341–354, 2002.

Guido Rößling and Thomas L. Naps. A Testbed for Pedagogical Requirements in Algorithm
Visualizations. Proceedings of the 7th Annual ACM SIGCSE / SIGCUE Conference on In-
novation and Technology in Computer Science Education (ITiCSE 2002), Århus, Denmark,
pages 96–100, June 2002.

Guido Rößling and Thomas L. Naps. Towards Improved Individual Support in Algorithm
Visualization. Second International Program Visualization Workshop, Århus, Denmark,
pages 125–130, June 2002.

Mads Torgersen. The expression problem revisited. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), Oslo, Norway, pages 123–143, 2004.

Fifth Program Visualization Workshop 129

Pedagogical Effectiveness of Engagement Levels - A Survey of
Successful Experiences

Jaime Urquiza-Fuentes, J. Ángel Velázquez-Iturbide
Universidad Rey Juan Carlos, C/ Tulipán, s/n, 28933 Móstoles (Madrid), Spain

jaime.urquiza@urjc.es

Abstract

In this paper we survey experiments with program and algorithm visualizations (PAVs)
where learning improvements have been detected. We analyze these experiments based
on the student’s level of engagement with the visualizations. There are some features
present in most of these, successful, experiments. Therefore they should be taken into
account as important factors affecting pedagogical effectiveness of PAVs, these features
are: narrative and textual contents, feedback to students’ answers and a student centered
approach when designing PAV construction kits.

1 Introduction

Studies about pedagogical effectiveness of PAVs have shown mixed results. The most sig-
nificant result was reported by Hundhausen et al. (2002), stating that effort dedicated by
students in visualization related tasks was more important than visual contents shown by
PAVs. They also identified lack of research in some areas, e.g. using narrative and textual
contents integrated with PAVs.

Following the idea of going beyond the passive viewing of PAVs, Naps et al. (2002) de-
veloped a taxonomy that identified different ways of interacting with PAVs. They called the
engagement levels taxonomy, an they suggested a hierarchical structure where more engage-
ment should produce educational improvements.

After reviewing PAV literature, and research on some engagement levels (Urquiza-Fuentes
and Velázquez-Iturbide, 2007; Urquiza-Fuentes, 2008), the authors feel that educational im-
provements could depend on other features. This survey studies possible effects of these
features.

The rest of the paper is organized as follows. First, in section 2, we describe the study we
have carried out, the kind of papers included and their surveyed features. Then, in section 3
we detail the successful experiences, grouped by the engagement levels where the improvement
were detected. In section 4 we analyze these experiences from two different point of views.
Finally, in section 5 we draw our conclusions and future work.

2 The survey

Literature about PAVs with educational aim is wide, we have focused on successful experi-
ences. These experiences must have detected educational improvements –knowledge acquisi-
tion, attitude towards the subject or materials, or programming performance– where PAVs
have been used.

Having a look at published experiments, one suspects that just visualizations are not
enough to obtain educational improvements. In fact, one of the most significant studies
on PAV (Hundhausen et al., 2002) concludes that the way that students use visualizations
is more important than what visualizations show to students. Also, there are successful
experiences based on providing high quality contents with the visualizations (Hansen et al.,
2000), advanced manipulation interfaces (Cross et al., 2007), or adding visualization sessions
to regular classes (Moskal et al., 2004).

Our aim is to deepen the effect that these additional features have on the educational
improvements. The features that we have taken into account are:

130 Fifth Program Visualization Workshop

Narrative contents and textual explanations They could help students to understand
graphical depictions generated by a PAV system. In addition, when students build their
own animations, adding narrative contents engage students in a reflection exercise that
could produce learning outcomes.

Feedback on student’s actions During animations, students can be asked to predict fu-
ture steps of the algorithm. Feedback to their answers could reinforce right answers or
correct wrong ones. As animations provide inherently feedback in the next step, we will
take into account only explicit feedback, for both right and wrong answers.

Extra time using PAV Many tasks in typical learning environments can not be replaced
with animation based tasks, therefore to use animations extra time is needed.

Advanced features Some systems provide with advanced contents showing different be-
haviors of the algorithm, advanced interfaces to manipulate visualizations, or advanced
integration with the IDE.

Obviously, we have used the educational improvement reported by each experience and the
engagement levels used. Educational improvements can be detected as knowledge acquisition,
student’s performance when programming their own solutions or student’s attitude towards
subjects or materials (usually knowledge acquisition is affected by attitude). Experiences
design range from studying improvements on one engagement level or a mixture of two of
them, to comparative studies.

3 Successful Experiences

We have considered 24 experiences in this survey. In this section, we describe them grouped
by the engagement level where the educational improvement has been detected. Table 1
summarizes these experiences.

3.1 Viewing

“Viewing” can be considered the core form of engagement, (...) a learner can
view an animation passively, but can also exercise control over the direction and
pace of the animation, use different windows (each presenting a different view),
or use accompanying textual or aural explanations. (...) The remaining four
categories all include viewing. (Naps et al., 2003)

The six experiences related to this level have detected educational improvements in terms
of knowledge acquisition. The seventh chapter of Lawrence’s dissertation (Lawrence, 1993)
detected improvements when using PAVs with textual labels. Crosby and Stelovsky (1995)
detected improvements when using multimedia materials made up of visualizations and nar-
rative contents, comparing it with the no viewing level.

Kann et al. (1997) made a comparative study among no viewing, viewing, constructing and,
viewing and constructing. But they only detected significant improvements between viewing
and no viewing students. It is the only viewing experience without textual or narrative
contents.

Kehoe et al. (2001) studied the use of PAV in a homework simulation environment, thus
students used animations to complete the assignments without time limit.

Kumar’s experience (Kumar, 2005) represents an auxiliary use of visualization. The main
role of Kumar’s system is tutoring students providing them with automatic generated prob-
lems. His experience found that using visualizations within the feedback provided by the tutor
improves knowledge acquisition.

Finally, Urquiza-Fuentes (2008) investigates the effect of replacing part of exercises sessions
with program visualizations sessions during a long term evaluation. The animations had
additional textual explanations.

Fifth Program Visualization Workshop 131

3.2 Responding

“Responding”. The key activity in this category is answering questions con-
cerning the visualization presented by the system. (...) In the responding form of
engagement, the learner uses the visualization as a resource for answering ques-
tions. (Naps et al., 2003)

The three studies of this level compare responding with no viewing level. The two first
experiences detected improvements in knowledge acquisition and were supported by additional
narrative contents. Although Byrne et al. (1999) used a plain algorithm animation, the
instructor provided the students with questions that had to be answered during the animation.
While Grissom et al. (2003) used a system that integrated automatically the questions within
the animation.

Finally, Laakso et al. (2005) went beyond simple questions, engaging the students in
simulation tasks. Here, the students manipulate a data structure simulating the behavior of
a given algorithm, receiving explicit feedback about their simulations. But they also used the
viewing level, as the students were allowed to see animations related to the algorithm that
they had to simulate.

3.3 Changing

“Changing”, entails modifying the visualization. The most common example
of such modification is allowing the learner to change the input of the algorithm
under study in order to explore the algorithms behavior in different cases.
(Naps et al., 2003)

The two first experiences mixed responding plus changing levels, and compared them with
viewing and no viewing levels. They can be found in the same publication Hansen et al.
(2000) –studies I, II, IV and V–. Instead of using just isolated animations with additions,
they produce high quality materials providing the students with three different animations
–conceptual/abstract, detailed and populated– of the same algorithm, asking questions to the
students and providing with explicit feedback.

Lawrence studied the effect of changing input data to animations against no viewing and
viewing levels. In the comparative study with the no viewing level (Lawrence et al., 1994)
she found improvements in knowledge acquisition; the animations had narrative contents
and students who worked with them had an additional lab session. She also compared this
level with the viewing one (Lawrence, 1993), obtaining again improvements in knowledge
acquisition without no additional features.

Ben-Bassat et al. (2003) studied the use of a visualization tool for teaching novices java.
They found that only medium students improved their knowledge. Moskal et al. (2004) focused
on novice students “at risk” of not succeeding in their first programing course. They detected
improvements in knowledge acquisition with an extra subject where students worked with an
advanced tool to learn OO programming basics.

Ahoniemi and Lahtinen (2007) compared this level with the no viewing level. They used
animations with additional narrative contents. This experience used homework assignments,
therefore working time was not limited.

The last changing experience (Cross et al., 2007) found improvements in programming per-
formance. The instructors provided students with an advanced tool integrated in a Java IDE,
while the students in the no viewing group used the same environment without visualization
features. The students completed programming and debugging tasks with the environment.

3.4 Constructing

“Constructing”. In this form of engagement, learners construct their own vi-
sualizations of the algorithms under study. Hundhausen and Douglas [27] have

132 Fifth Program Visualization Workshop

identified two main ways in which learners may construct visualizations: direct
generation and hand construction. (...) It is important to note that the Con-
structing form of engagement does not necessarily entail coding the algorithm.
(Naps et al., 2003)

Stasko (1997) designed assignments where students had to construct their own animations.
This also included some changing activities. He detected that students dedicated more time
to study those algorithms for which they had constructed animations.

Urquiza-Fuentes and Velázquez-Iturbide (2007) made a short term comparative study
with viewing level. Students within the constructing group generated animations with tex-
tual explanations using an effortless approach, while the others just viewed the same kind
of animations, thought generated by the instructors. They detected improvements in stu-
dents’ attitude, constructing students remained studding the algorithm more time, and their
knowledge acquisition was improved.

Finally, Urquiza-Fuentes (2008) studied the effect of the same construction approach in a
long term evaluation. He compared the constructing level with viewing and no viewing levels.
He detected improvements in attitude on both comparisons; he also detected improvements
in knowledge acquisition when comparing with the no viewing level.

3.5 Presenting

“Presenting”, entails presenting a visualization to an audience for feedback and
discussion. (Naps et al., 2003)

The three experiences studding presenting level include construction tasks, therefore all
have additional narative contents. Two of them have focused just on this mixture of tasks
(Hundhausen, 2002; Hundhausen and Brown, 2008), while the other compared it with the
viewing level.

First, Hundhausen (2002) compared constructing and presenting tasks using two different
tools: a wellknown algorithm visualization tool, and utilities selected by the students – ranging
from slides to crafts–. This observational study detected improvements in attitude of those
students who used their own utilities. Using these results, a tool for algorithm animations
construction was designed and compared again with construction utilities selected by the
students (Hundhausen and Brown, 2008). In this experience, improvements in programming
performance were detected on the students who worked with the designed tool.

Finally, Hübscher-Younger and Narayanan (2003) compared presenting and constructing
levels with the viewing level. They encouraged students –voluntary task– to generate ani-
mations and asked them to evaluate –compulsory task– those generated by the rest of the
students. The construction utilities were chosen by the students. They detected improvements
in knowledge acquisition of the students who constructed the animations.

4 Discussion

4.1 A global view

Clearly, learning can be enhanced with PAV. The 75% (18/24) of the experiences have de-
tected improvements in terms of knowledge acquisition, together with more than 20% (5/24)
detecting improvements in attitude towards the materials used or the subjects affected by the
study. Finally, programming skills can also be improved, as they have been detected in more
than 8% (2/24) of experiences.

Looking at the successfull engagement levels investigated, there are two ends. Changing
is the most investigated level with the 37.5%(9/24) of the experiences, while presenting is
the opposite with 12.5%(3/24). Responding is present in the 20.8%(5/24) of experiences, and
both viewing and constructing are present in the 27.2%(7/24) of experiences.

Fifth Program Visualization Workshop 133

T
ab

le
1:

Su
m

m
ar

y
of

su
cc

es
sf

ul
l

ex
pe

ri
en

ce
s

gr
ou

pe
d

by
en

ga
ge

m
en

t
le

ve
ls

E
x
p

er
ie

n
ce

E
d

u
ca

ti
on

al
E

n
ga

ge
m

en
t

N
ar

ra
ti

ve
E

x
p

li
ci

t
E

x
tr

a
A

d
va

n
ce

d
im

p
ro

ve
m

en
t

le
ve

ls
co

n
te

n
ts

fe
ed

b
ac

k
ti

m
e

fe
at

u
re

s

L
aw

re
nc

e
(1

99
3)

C
h.

7
K

no
w

le
dg

e
ac

q.
(V

)
?

C
ro

sb
y

an
d

St
el

ov
sk

y
(1

99
5)

K
no

w
le

dg
e

ac
q.

(V
)
⇒

N
V

?
K

an
n

et
al

.
(1

99
7)

K
no

w
le

dg
e

ac
q.

(V
)
⇒

N
V

K
eh

oe
et

al
.

(2
00

1)
K

no
w

le
dg

e
ac

q.
(V

)
⇒

N
V

?
?

K
um

ar
(2

00
5)

(F
ee

db
ac

k
of

tu
to

ri
ng

sy
st

em
)

K
no

w
le

dg
e

ac
q.

(V
)
⇒

N
V

?
U

rq
ui

za
-F

ue
nt

es
(2

00
8)

K
no

w
le

dg
e

ac
q.

(V
)
⇒

N
V

?
B

yr
ne

et
al

.
(1

99
9)

K
no

w
le

dg
e

ac
q.

(R
)
⇒

N
V

?
G

ri
ss

om
et

al
.

(2
00

3)
K

no
w

le
dg

e
ac

q.
(R

)
⇒

N
V

?
L

aa
ks

o
et

al
.

(2
00

5)
A

tt
it

ud
e

(R
,V

)
⇒

N
V

?
H

an
se

n
et

al
.

(2
00

0)
St

ud
ie

s
I-

II
-I

V
K

no
w

le
dg

e
ac

q.
(C

H
,R

)
⇒

N
V

?
?

C
on

te
nt

s
H

an
se

n
et

al
.

(2
00

0)
St

ud
y

V
K

no
w

le
dg

e
ac

q.
(C

H
,R

)
⇒

V
?

?
C

on
te

nt
s

L
aw

re
nc

e
(1

99
3)

C
h.

6
K

no
w

le
dg

e
ac

q.
(C

H
)
⇒

V
?

L
aw

re
nc

e
et

al
.

(1
99

4)
K

no
w

le
dg

e
ac

q.
(C

H
)
⇒

N
V

?
?

B
en

-B
as

sa
t

et
al

.
(2

00
3)

K
no

w
le

dg
e

ac
q.

(C
H

)
M

os
ka

l
et

al
.

(2
00

4)
K

no
w

le
dg

e
ac

q.
(C

H
)
⇒

N
V

?
ID

E
in

te
rf

ac
e

A
ho

ni
em

i
an

d
L

ah
ti

ne
n

(2
00

7)
K

no
w

le
dg

e
ac

q.
(C

H
)
⇒

N
V

?
?

C
ro

ss
et

al
.

(2
00

7)
P

ro
g.

pe
rf

or
m

.
(C

H
)
⇒

N
V

V
is

.
in

te
rf

ac
e

St
as

ko
(1

99
7)

A
tt

it
ud

e
(C

,C
H

)
U

rq
ui

za
-F

ue
nt

es
an

d
V

el
áz

qu
ez

-I
tu

rb
id

e
(2

00
7)

A
tt

./
K

no
w

.
ac

q.
(C

)
⇒

V
?

?
U

rq
ui

za
-F

ue
nt

es
(2

00
8)

A
tt

.&
K

no
w

.
ac

q.
(C

)
⇒

N
V

?
U

rq
ui

za
-F

ue
nt

es
(2

00
8)

A
tt

it
ud

e
(C

)
⇒

V
?

H
un

dh
au

se
n

(2
00

2)
A

tt
it

ud
e

(P
,C

)
?

H
üb

sc
he

r-
Y

ou
ng

er
an

d
N

ar
ay

an
an

(2
00

3)
K

no
w

le
dg

e
ac

q.
(P

,C
)
⇒

V
?

H
un

dh
au

se
n

an
d

B
ro

w
n

(2
00

8)
P

ro
g.

pe
rf

or
m

.
(P

,C
)

?

134 Fifth Program Visualization Workshop

Not all experiences compare two different levels, 20.8%(5/24) of them explores possible
improvements within a concrete level. When looking at the comparative experiences, the
73.7%(14/19) have studied the PAV effectiveness against no use of it , the rest –26.3%(5/19)–
did it against the viewing engagement level.

The use of narrative and textual contents is present in the 75%(18/24) of the experiences.
This means that they are an important factor to take into account when designing learning
experiences with PAV. While explicit feedback, extra working time or advanced features –high
quality contents, advanced interfaces– are present on less than 21% of the experiences.

4.2 Recommendations for designing visualization based learning experiences

As this is not a meta study like (Hundhausen et al., 2002), we can not give formal and scientific
evidence of correlations among different engegament levels and educational improvements.
But all these experiences give empirical evidence on successful uses of different engagement
levels, thus we can extract a number of recommendations for each engagement level.

Just viewing animations can improve knowledge acquisition, but animations should
have additional text or narrative contents.

When students answer questions during the animation, again they should be pro-
vided with additional narrative or textual contents. But explicit feedback is also important,
although it is no present in two of the experiences, the questions used in these experiences
were predictive ones, thus the correct answer is given in the next steps of the animation.

Allowing the students to changing input data is a more active task. Here, narratives and
textual contents seem to be less important 62.5%(5/8). The reason could be that researchers
were more interested in cognitive work performed by students when choosing input data,
rather than explaining students what happens. As this is an explorative task, a strict time
limit should be avoided. But also some advanced features as high quality contents –different
execution conditions (Hansen et al., 2000)–, the integration with the IDE (Moskal et al., 2004),
or the interface used to manipulate animations (Cross et al., 2007), could produce learning
outcomes.

When students construct their own animations, the construction interface is very
important. Thus, providing the students with carefully designed interfaces, or allowing them
to choose their own construction kits, have been shown to be effective1. Encouraging students
to produce their own textual or narrative contents is also positive. Here, most improvements
have been detected in attitude towards materials and subjects.

Finally, when students are asked to present animations, they also should construct
them. Therefore, the construction interface is important again.

4.3 Suggestions for moving among engagement levels

Looking at the experiences, we can analyze what engagement levels have been overcome by
others and how. Most of the experiences report on improvements when comparing with the
no viewing and viewing engagement levels.

Coming from the no viewing engagement level The no viewing level means that no
PAVs are being used. Thus, a simple change is to move to the viewing level, where knowledge
acquisition is improved. It can be a simple movement because there exist a number of PAV
collections, but if one wants to generate her own PAVs, the narrative and textual contents
should be taken into account.

Moving to the responding level is also possible because, again, there are existing PAV
collections. This movement can improve attitude and knowledge acquisition. When design-

1both represent a student centered approach rather a high technology centered approach

Fifth Program Visualization Workshop 135

ing your own responding experiences the use of narrative contents and explicit feedback is
important.

Attitude, knowledge acquisition and programming skills can be improved by moving to
the changing level. Probably, it will need more time from the students, because this level is
often used in a homework environment. Again, narrative contents and explicit feedback –just
in case of using this level together with responding– are suggested. Also, some experiences
have incorporated advanced features, as high quality contents –this means more work for the
teacher– and, good integration with the IDE and advanced programming and visualization
interface –this means more development effort if one wants to build her own system–.

Finally, moving to the constructing level can improve attitude and knowledge acquisition.
The construction process should be effortless, and narrative contents should be added.

Coming from the viewing engagement level This level means low interaction with
visualizations. Thus a simple change is to move to the changing level, where knowledge
acquisition is improved. In addition to narrative contents and explicit feedback, high quality
contents have been shown to be effective.

Moving to the constructing level could improve attitude and , as a side effect, knowledge
acquisition. Again, the construction process should be effortless, and narrative contents should
be integrated in the animations. It can be used together with presenting level, improving
knowledge acquisition, but students should be free to choose their own construction kits.

5 Conclusions and future work

This is not a meta study, note that we have not included unsuccessful experiences, therefore we
can not state if the studied features are significant factors for educational improvements. But
we can give some recommendations, we have seen many features present in these successful
experiences: narrative and textual contents, feedback to students’ answers, and a student
centered approach when designing PAV construction kits. Finally, we have identified possible
ways to move among engagement levels and its possible effects.

The future work will consider unsuccessful experiences, therefore we will be able to give
more formal correlations between engagement levels and educational improvements.

References

T. Ahoniemi and E. Lahtinen. Visualizations in preparing for programming exercise sessions.
Electronic Notes in Theoretical Computer Science, 178:137–144, July 2007.

R. Ben-Bassat, M. Ben-Ari, and P.A. Uronen. The jeliot 2000 program animation system.
Computers & Education, 40(1):1–15, January 2003.

M.D. Byrne, R. Catrambone, and J.T. Stasko. Evaluating animations as student aids in
learning computer algorithms. Computers & Education, 33:253–278, 1999.

M.E. Crosby and J. Stelovsky. From multimedia instruction to multimedia evaluation. Journal
of Educational Multimedia and Hypermedia, 4:147–162, 1995.

J.H. Cross, T.D. Hendrix, J. Jain, and L.A. Barowski. Dynamic object viewers for data
structures. SIGCSE Bull., 39(1):4–8, 2007.

S. Grissom, M.F. McNally, and T.L. Naps. Algorithm visualization in CS education: com-
paring levels of student engagement. In Proc. of the 2003 ACM Symposium on Software
Visualization, pages 87–94, New York, NY, USA, 2003. ACM Press.

136 Fifth Program Visualization Workshop

S.R. Hansen, N.H. Narayanan, and D. Schrimpsher. Helping learners visualize and compre-
hend algorithms. Interactive Multimedia Electronic Journal of Computer-Enhanced Learn-
ing, 2(1), April 2000. available at http://imej.wfu.edu/articles/2000/1/02/, 2008.

T. Hübscher-Younger and N.H. Narayanan. Dancing hamsters and marble statues: charac-
terizing student visualizations of algorithms. In Proc. of the 2003 ACM Symposium on
Software Visualization, pages 95–104. ACM Press, 2003. doi: http://doi.acm.org/10.1145/
774833.774847.

C.D. Hundhausen. Integrating algorithm visualization technology into an undergraduate al-
gorithms course: ethnographic studies of a social constructivist approach. Computers &
Education, 39(3):237–260, 2002.

C.D. Hundhausen and J.L. Brown. Designing, visualizing, and discussing algorithms within a
cs 1 studio experience: An empirical study. Computers & Education, 50(1):301–326, 2008.

C.D. Hundhausen, S.A. Douglas, and J.T. Stasko. A meta-study of algorithm visualization
effectiveness. J. Visual Lang. and Comp., 13(3):259–290, 2002.

C. Kann, R.W. Lindeman, and R. Heller. Integrating algorithm animation into a learning
environment. Computers & Education, 28(4):223–228, 1997.

C. Kehoe, J.T. Stasko, and A. Taylor. Rethinking the evaluation of algorithm animations as
learning aids: An observational study. Int. J. Hum.-Comput. Stud., 54(2):265–284, 2001.

A.N. Kumar. Results from the evaluation of the effectiveness of an online tutor on expression
evaluation. SIGCSE Bull., 37(1):216–220, 2005.

M-J. Laakso, T. Salakoski, L. Grandell, X. Qiu, A. Korhonen, and L. Malmi. Multi-
perspective study of novice learners adopting the visual algorithm simulation exercise sys-
tem TRAKLA2. Informatics in Education, 4(1):49–68, 2005.

A.W. Lawrence. Empirical studies of the value of algorithm animation in algorithm under-
standing. PhD thesis, Dep. of Computer Science, Georgia Institute of Technology, 1993.

A.W. Lawrence, A.M. Badre, and J.T. Stasko. Empirically evaluating the use of animations
to teach algorithms. In IEEE Symposium on Visual Languages, 1994. Proc., pages 48–54.
IEEE Computer Society Press, 1994.

B. Moskal, D. Lurie, and S. Cooper. Evaluating the effectiveness of a new instructional
approach. SIGCSE Bull., 36(1):75–79, 2004.

T.L. Naps, G. Roessling, V. Almstrum, W. Dann, R. Fleischer, C. Hundhausen, A. Korhonen,
L. Malmi, M. McNally, S. Rodger, and J.Á. Velázquez-Iturbide. Exploring the role of
visualization and engagement in computer science education. SIGCSE Bull., 35(2):131–
152, 2003.

J.T. Stasko. Using student-built algorithm animations as learning aids. SIGCSE Bull., 29(1):
25–29, 1997.

J. Urquiza-Fuentes. Generación Semiautomática de Animaciones de Programas Funcionales
con Fines Educativos. PhD thesis, Dep. de Lenguajes y Sistemas Informáticos I, Universidad
Rey Juan Carlos, 2008.

J. Urquiza-Fuentes and J.Á. Velázquez-Iturbide. An evaluation of the effortless approach
to build algorithm animations with winhipe. Electronic Notes in Theoretical Computer
Science, 178:3–13, July 2007.

Fifth Program Visualization Workshop 137

List of Authors

De Backer, Carlos, 11

Ahoniemi, Tuukka, 53, 73
Alvarez, Dario, 67

Barowski, Larry A., 3
Benachour, Phillip, 91
Bruce-Lockhart, Michael, 45

Crescenzi, Pierluigi, 45
Cross II, James H. , 3

Davis, Ruth, 19

Fondon, Marian Diaz, 67

Helminen, Juha, 59
Hendrix, T. Dean, 3

Karavirta, Ville, 37, 79
Korhonen, Ari, 59

López-Mart́ınez, Miguel A., 85
Lahtinen, Essi, 53, 73

Mehlhase, Stephan, 105
Moons, Jan, 11

Nikander, Jussi, 59
Norvell, Theodore, 45

Pérez-Carrasco, Antonio, 113
Pfau, Jens, 105

Rößling, Guido, 29, 97, 105, 121
Riesco, Miguel, 67
Rodŕıguez, Pilar, 1

Sánchez-Torrubia, M. Gloria, 85
Schaeckeler, Stefan, 19
Schroeder, Peter, 97
Seppälä, Otto, 79
Shang, Weijia, 19

Therón, Roberto, 2
Torres-Blanc, Carmen, 85

Urquiza-Fuentes, Jaime, 113, 129

Velázquez-Iturbide, J. Ángel, 113, 129
Vellaramkalayil, Teena, 29

