
Francisco J. Almeida Martínez
Jaime Urquiza Fuentes

Teaching LL(1) parsers with
VAST - A usability evaluation
Número 2009-01

Serie de Informes Técnicos DLSI1-URJC
ISSN 1988-8074
Departamento de Lenguajes y Sistemas Informáticos I
Universidad Rey Juan Carlos

Índice

1. Introduction……………………………………………………….. 1

2. Description of the evaluation.…………………………………….. 2
2.1. Subjects ………………………………………………………………………… 3
2.2. Experimental Design…………………………………………………………… 4
2.3. Tasks …………………………………………….……………………………… 4
2.4. Protocol ………………………………………………………………………… 5

3. Results of the Evaluation…..…………………………………….. 6
3.1. Instructors' observations……………………………………………………… 6
3.2. Answers to the questionnaire………………………………………………… 7

4. Conclusions.……………………………………………………….. 8

5. Acknowledgments………………….……………………………... 9

References …………………………………………………………... 9

Apendix: ……………..…………………..……………….……….... 10
A. Knowledge Test ………….…………………………………………..………… 10
B. Student's Opinion Questionnaire about VAST ………….………...………… 11
C. Student's Opinion Questionnaire about ANTLRWorks …….……………… 12

Teaching LL(1) parsers with VAST

A usability evaluation

Francisco J. Almeida-Mart́ınez and Jaime Urquiza-Fuentes

LITE – Laboratory of Information Technologies in Education
Technical Superior School of Computer Science Enginnering

Rey Juan Carlos University
{fancisco.almeida,jaime.urquiza}@urjc.es

Abstract. VAST is an educational tool to be used in compiler and
language processing courses. It is focused on syntax trees visualization.
Its main aim is to be as much independent from the parser generator
as possible. Allowing the visualization and animation of syntax trees
produced by self developed parser. We have evaluated the usability of
VAST in a comparative evaluation with the ANTLRWorks tool. In this
report we detail the subjects, method, immediate results and conclusions
of this evaluation.

1 Introduction

VAST[1] is an educational tool to be used in compiler and language processing
courses. The current version allows visualizing syntax trees and their construc-
tion process. The main advantages of VAST follow: it is designed to be as in-
dependent from the parser generator as possible, it allows students to visualize
the behaviour of parsers they develop, and it has an interface designed to easily
handle huge syntax trees.

VAST offers an API –VASTapi– designed to be used when the parser is
building the ST, and a graphical interface –VASTview– to visualize the ST
generated. First, the user annotates the syntax specification, then generates the
parser with any parser generator, and visualizes the syntax tree when the parser
is executed, Figure 1 summarizes this process.

Fig. 1. Use and structure of VAST

We have designed VASTapi as simple as possible close to the concepts that
are being visualized. VASTview is a visualization interface specially designed
to show syntax trees, see Figure 2. It also shows synchronized views of the input
stream and the stack, the later is still under development. As these trees can be
huge we have added special visualization features as global/detailed views and
a zoom facility. Finally we allow the users to change the configuration of the
graphical representations.

Fig. 2. A snapshot of the VASTview interface

This report describes a usability evaluation of VAST. It has been carried out
within a language processing course, while teaching the LL(1) parsers.

The rest of the report is organized as follows. In section 2 we describe the
evaluation, the subject, the method and the protocol. In section 3 we describe
the results of this evaluation in terms of instructors’ observations and students’
answers to a questionnaire. Finally, we draw our conclusions in section 2.

2 Description of the Evaluation

In this section we give a detailed description of the evaluation. We describe
the students who participated in the evaluation, the experimental design of the
evaluation, the protocol and the tasks performed during the treatment.

2.1 Subjects

59 students participated in the evaluation. They were enrolled in a language
processors course of the fourth year of a (five years) BSc in Computer Science at
the Universidad Rey Juan Carlos (http://www.urjc.es). The participation was
almost voluntary. We say almost because it was incentive based with an incre-
ment of 2% in the final grade, only if they pass the exam. Gender distribution
is unbalanced, 5.4% (3/59) of the students were female.

They completed a learning style test [2], see the distribution of the learning
styles in Figure 3.

Active – Reflective Sensing – Intuitive

Visual – Verbal Global – Sequential

Fig. 3. Distribution of the learning styles within the subjects

2.2 Experimental Design

This evaluation has been designed as a controlled experiment plus an observa-
tional study [3]. As we are evaluating an educational tool we have used some
guidelines of true experimental studies [4]. It is a controlled evaluation because
we divided the subjects in two groups the treatment group –which worked with
the tool VAST– and the control group –which worked with the tool ANTLR-
Works1–. Group design was partially randomized. Both groups were balanced as
much as possible using the pretest (see appendix A) grades. Students were clas-
sified by their pretest grades but the selection of the group (treatment/control)
for each student within these classes was randomized.

The independent variable is the tool used: VAST(treatment) or ANTLR-
Works(control). The dependent variables collect students’ opinion about four
different aspects. The data has been collected using two different questionnaires
depending on the group: treatment (appendix B) and control (appendix C).
Table 1 maps aspects and questions in the questionnaires.

Table 1. Questionnaire of students’ opinion

Students’ opinion Questions in Questions in
about treatment questionnaire control questionnaire

Ease of use 1,2,5 1,4

Learning improvement 3 2

Quality of the tool 4,5 3,4

Student’s satisfaction 6,7 5

Other aspects 8-11 6-9

2.3 Tasks

All the tasks completed by the students have to be documented using visualiza-
tions and textual explanations. The tasks were three exercises of LL(1) parsing
concepts. First we explain how students have to generate the visualizations de-
pending on the group they belong to.

Control Students have to code the grammar with the grammar editor of ANTL-
RWorks, if they want to see static visualizations of the syntax trees generated
by their parser, they only need to use the interpreter. But if they want to see
the animation of the process then they have to use the debugger facility. Both
the interpreter and the debugger ask the user to specify the input stream, the
starting rule and the line ending platform.

1 http://www.antlr.org/works/index.html, 2009

Treatment Students have to code the syntax specification using a general
purpose editor. Then they annotate the specification using simple VASTapi
calls. Next they generate the parser using ANTLR with the annotated specifica-
tion and compile the generated parser. Each execution of the parser –using the
console– produces the visualization that can be viewed with VASTview.

In the first exercise students were asked to change a grammar of arithmetic
expressions so existing precedences of binary operators were changed. The orig-
inal grammar was:
S := F N
N ::= + F N | - F N | * F N | / F N | λ
F ::= id | cte | (S)
The new grammar must give the highest precedence to * and / operators –both
the same–, then a medium precedence to the - operator and the lowest prece-
dence to the + operator. And all binary operators must be right-associative.

The solution to this exercise is a grammar together with: a screenshot (or a
group of them) showing the existing precedences, the input stream(s) used to
produce the visualization(s) and a textual explanation of the solution.

In the second exercise, students were asked to generate two inputs with syn-
tax errors produced by problems with: the starters symbols and the expected
terminals inside right parts of the grammar rules. Again, the solution to both
cases is made up of the input stream, the visualization and the textual explana-
tion.

Finally, in the third exercise students were asked about syntax error recovery
situations with the panic mode strategy. For each non terminal symbol X in the
grammar, students have to generate an erroneous input stream were the group
of terminals in FOLLOW(X) were used as the synch terminals. Again, the solution
is made up of the input streams, the visualizations and the textual explanations.

2.4 Protocol

This section describes the protocol of the evaluation, the order of the different
activities performed by students. Table 2 summarizes this protocol.

Two weeks before the experiment, students completed the pretest (see ap-
pendix A). Then we formed the control and treatment groups.

Note that VAST needs a parser generation tool. Therefore we ensured a bal-
anced knowledge of the parser generation phase using ANTLR2. One week be-
fore the experiment, students had a lab session with exercises about the ANTLR
parser generator so they were familiar with ANTLR syntax for grammar speci-
fications and their generation process.

The experiment was two hours long. First, instructors gave a tutorial about
the corresponding visualization tool –ANTLRWorks and VAST–. Then, the stu-
dents worked with the exercises. At the end of the session, students completed
the opinion questionnaire. Students had one day to solve the problems, thus they
sent the documents with their solutions to the teachers.
2 http://www.antlr.org/, 2009

Treatment group Control group

Knowledge pretest

ANTLR Lab session

ANTLR/VAST tutorial ANTLRWorks tutorial

Execises

Questionnaire
Table 2. Protocol of the evaluation

3 Results of the Evaluation

In this section we detail the results obtained from the experiment. During the
experiment we observed how students worked with the tools. Therefore results
can be divided in instructors’ observations and answers to the questionnaire.

3.1 Instructors’ observations

The instructors observed how students used the tools during the experiment,
detected bugs, found problems and, valuable and useless features.

Control group The control group used the ANTLRWorks environment. This
environment encapsulates under the same interface the syntax specification ed-
itor and the generation of visualizations.

Students liked the syntax specification editor and how it graphically differen-
tiates between lexical and syntax rules. They detected some possible bugs as: file
paths with blank spaces and the use of multi-platform end of lines, in this last
case students using a Mac had to select Windows version for the end of lines.

The debugger of ANTLRWorks need a specific free port in the computer.
Students found problems because some of the computers in the lab didn’t have
this port free. Neither students nor instructors could change computers port
configuration, and there was not enough time to find other ports using a trial-
error process.

Finally, students got confused with some aspects: choosing the end of line
platform, choosing the starting symbol and why there were two ways of gener-
ating visualizations, the interpreter and the debugger.

Treatment group The treatment group used the ANTLR tool to generate
the parser and VAST to generate and view the visualizations. Students used
standard editors to code the syntax specifications and annotate it with calls to
VASTapi. Finally, they used two tools to compile/execute the parser, some of
them used javac/java in the console while others used the Eclipse IDE3.

3 http://www.eclipse.org/, 2009

Students liked the animations produced with VAST –they payed special at-
tention to the construction order of the syntax tree– and experimented with dif-
ferent graphical configurations. They detected one small bug in the tree drawing
algorithm.

Students found an important problem during compilation. Unfortunately, jdk
configuration was obsolete, thus ANTLR specifications were compiled correctly
but VASTapi calls were not. Fixing this problem was hard for both students
and instructors because the last jdk was installed but not correctly specificated
in the PATH environment variable. Some students decided to use the Eclipse
IDE, others didn’t found this problem. Consequently, a number of students felt
frustrated with the tool and gave up while others continued working after the
lab session.

Other problem observed by the instructor was the number of simultane-
ously open windows: the editor, the command console, the compilation window
–Eclipse IDE or another console– and the VASTview window. Note that stu-
dents didn’t identify this situation as a problem but the instructor observed that
this issue should be improved. Finally, we detected two anecdotal problems with
VASTapi calls: the setRoot and GenerateXML methods.

3.2 Answers to the questionnaire

The problems mentioned before prevented some students from completing exer-
cises and the corresponding questionnaire. Thus, the total number of students
was 48, 22 in the treatment and 26 in the control group.

All the questions about opinion or quality have to be answered using a Likert
scale with five values being: 1 the worst opinion or quality, 3 no opinion or
medium quality, and 5 the best opinion or quality. Table 3 shows average results
for each dependent variable and a significant differences analysis.

We put some open questions in the questionnaire, thus students had more
freedom to explain their opinion about the tools. We asked students to iden-
tify which parts of the tools were specially difficult to use, questions 1,2 in the
treatment group and question 1 in the control group. While the treatment group
identified the compiling process –obviously caused by problems with jdk–, the
control group identified the debugger together with the error messages of the
tool.

Questions 4(treatment) and 3(control) asked students about the quality of
the tool. Both groups highlighted the visualization of the tree as a high quality
feature. In addition, the treatment group identified the animation of the tree
construction process while the control group identified the grammar editor as
high quality features. Low quality features were found as well. The treatment
group identified, thought not significantly, classpath problems –again related
with the jdk problem–, while the control group identified the debugger, obviously
because some of them could not use it.

Questions 8(treatment) and 6(control) asked students about useful features
that should be added to the tools. The treatment group identified the integration
of the different tools used –editor, console, parser generator, parser execution,

Table 3. Questionnaire of students’ opinion

Students’ opinion Average grade Average grade Significant
about treatment group control group differences

Ease of use
General 4.18 (VASTview) 4.36 p > .05

3.15 (VASTapi) p < .05
Average of parts 4.12 3.80 p > .05

Learning improvement
Construction process 4.14 4.26 p > .05
Input stream 3.62 3.72 p > .05
Stack 3.46 2.38 p < .05

Quality of the tool
General 3.69 4.18 p > .05
Average of parts 4,11 3,79 p > .05

Student’s satisfaction 4.18 (VASTview) 4.09 p > .05
3.45 (VASTapi) p < .05

visualization– and the possibility of resize windows of VASTview. The control
group identified the synchronization between the grammar editor and the error
messages together with the animations of the construction of the syntax tree.
On the contrary, none of the groups identified significantly any useless features
to remove from the tools.

Students were asked for positive aspects in questions 10(treatment) and
8(control). The treatment group identified the visualization of the syntax tree
and the animation of its construction process together with the simplicity of the
VASTapi methods. The control group identified the grammar editor and the
platform independence.

Finally, students were asked for negative aspects in questions 11(treatment)
and 9(control). The treatment group identified the fact that windows of VASTview
were not resizable and the compilation process. The control group clearly iden-
tified the debugger as the most negative aspect. Other aspect identified, but less
important than the debugger, was the language of the tool.

4 Conclusions

The results for VASTview are positive regarding the dependent variables: ease
of use, learning improvement, quality of the tool and student’s satisfaction. Also
the instructors observed that students liked the visualization and animation
capabilities of VASTview.

ANTLRWorks obtained similar results. Although students got confused due
to some professional features as choosing the end of line platform and the starting
grammar rule, or having two different visualization tools.

Students’ opinion about VASTapi is two-fold. On the one hand, students
think that the API is quite simple. On the other hand, the grades for ease of

use and students’ satisfaction are worse than those for VASTview and ANTL-
RWorks.

We feel that we should redesign the way that students build the visualiza-
tions. We have detected that the generation process of visualizations is made up
of many separate steps: grammar edition, grammar annotation, parser genera-
tion, parser compilation, input stream edition, parser execution and visualiza-
tion. This situation should not be a problem for the teachers, but many separate
tasks could be a source of students’ errors and mistakes.

We plan a global integration, thus parser visualizations will adapt to the
typical parser development process of specification, generation and execution. It
will be based on two functional integrations:

annotation-generation-compilation it will automatically annotate grammar
specifications, generate the parser source code and compile it. The require-
ment of parser generator independence is affected by the automatic annota-
tion as it will be reached with specific developments for each parser generator.
From the students’ point of view, making the annotation step transparent
to students is much more important than loosing parser generator indepen-
dence. From the teachers’ point of view, we keep independent from the parser
generator, because they can still annotate manually parser specifications.

execution-visualization it will allow students to edit the input stream, exe-
cute the parser and visualize the ST using the same interface.

5 Acknowledgments

This work was supported by project TIN2008-04103/TSI of the Spanish Ministry
of Science and Innovation.

References

1. Almeida-Mart́ınez, F.J., Urquiza-Fuentes, J., Ángel Velázquez-Iturbide, J.: Vast:
visualization of abstract syntax trees within language processors courses. In: SoftVis
’08: Proceedings of the 4th ACM symposium on Software visuallization, New York,
NY, USA, ACM (2008) 209–210

2. Felder, R., Silverman, L.: Learning and teaching styles in engineering education.
Engr. Education 78(7) (1988) 674–681

3. Kulyk, O., Kosara, R., Urquiza-Fuentes, J., Wassink, I.: Human-Centered Aspects.
In: Human-Centered Visualization Environments. Springer-Verlag (2007) 13–75

4. Cohen, L., Manion, L., Morrison, K.: Research Methods in Education. Fith edition
edn. Routledge Falmer, NY, New York, USA (2001)

A Knowledge Test

1. What are the main features of LL(1) parsers?
2. What is a derivation?
3. Define the panic mode error recovery strategy.
4. Given the following grammar:

S ::= F S’
S’ ::= + F S’ | - F S’ | λ
F ::= id | num | (S)
Give cases of an LL(1) non recursive parser detailing the state of the input
stream and the stack before and after the following operations:
(a) A derivation
(b) Token recognition in the input stream
(c) An error recovery using FOLLOW(current non-terminal being derived)

as the synchronization tokens.
5. Given the previous grammar, its corresponding non recursive LL(1) parser

built with a panic mode error recovery strategy using FOLLOW(current
non-terminal being derived) as the synchronization tokens and the following
parser state: ($ S’) S , id num num) - num $).
Detail the next steps of the parser until the stack has just the symbol S’.

6. Design an LL(1) grammar for logical expressions with the following features:
(a) The operators are: the parenthesis, the unary operator not, and the

right-associative binary operators xor, and, or, nand y nor. Precedence
of the operators is given in the following table:

() Highest precedence
not

and nor Both the same precedence
or nand Both the same precedence
xor Lowest precedence

(b) Both, precedence and associativity, must be integrated in the grammar.
Thus, if an operator O1 has greater precedence than an operator O2
then O1 and its arguments are processed by the parser before O2 and
its arguments.

(c) The arguments of the operators are the locical constants true and false.
(d) Some examples of correct streams:

not true nor false and false
false or true nand not (true xor not false)

7. The following grammar is a proposed solution to the previous exercise:
S ::= A S’ | (S)
S’ ::= xor A S’ | λ
A ::= B A’
A’ ::= or B A’ | nor B A’ | λ
B ::= C B’
B’ ::= and C B’ | nand C B’ | λ
C ::= not D | D
D ::= true | false
But it could be incorrect, therefore:

(a) Define criteria to evaluate the goodness of the solution proposed.
(b) Evaluate your solution and the proposed one using the previous criteria.

B Student’s Opinion Questionnaire about VAST

1. In my opinion, VASTapi is easy to use: []
Identify which parts, if any, are more difficult to use:

2. In my opinion, VASTview is easy to use: []
Identify which parts, if any, are more difficult to use:

3. In my opinion, VAST has helped me to understand how LL(1) parsers work
regarding:
The construction process of the syntax tree: []
How the input stream is processed: []
How the stack of pareser works: []

4. In my opinion, the general quality of VAST to show how LL(1) parsers work
is high: []
Identify which parts are the best:
Identify which parts are the worst:

5. Please, grade the ease of use and the quality of the different parts of VAST:
Ease of use Quality

Structure of the main menu
Icons
Animation controls
Global view/Navigation
Expand/Collapse syntax tree
Zoom
Input stream view
Stack view
Configuration aspects (colors, lines, ...)
Configuration management

6. In my opinion, I like VASTapi: []

7. In my opinion, I like VASTview: []

8. Identify which useful features are not present in VAST(VASTapi and/or
VASTview):

9. Identify which features present in VAST(VASTapi and/or VASTview)
that are useless enough to be removed :

10. Identify positive aspects of VAST(VASTapi and/or VASTview):

11. Identify negative aspects of VAST(VASTapi and/or VASTview):

C Student’s Opinion Questionnaire about ANTLRWorks

1. In my opinion, ANTLRWorks is easy to use: []
Identify which parts, if any, are more difficult to use:

2. In my opinion, ANTLRWorks has helped me to understand how LL(1)
parsers work regarding:
The construction process of the syntax tree: []
How the input stream is processed: []
How the stack of pareser works: []

3. In my opinion, the general quality of ANTLRWorks to show how LL(1)
parsers work is high: []
Identify which parts are the best:
Identify which parts are the worst:

4. Please, grade the ease of use and the quality of the different parts of ANTL-
RWorks:

Ease of use Quality
Grammar editor
Interpreter
Input stream view
Syntax tree view
Debugger
Input stream view
Syntax tree view
Stack view
Events view
Debugging controls

5. In my opinion, I like ANTLRWorks: []

6. Identify which useful features are not present in ANTLRWorks:

7. Identify which features present in ANTLRWorks that are useless enough to
be removed :

8. Identify positive aspects of ANTLRWorks:

9. Identify negative aspects of ANTLRWorks:

