
Jaime Urquiza-Fuentes
Francisco Manso

A second evaluation of SOTA

Número 2011-03

Serie de Informes Técnicos DLSI1-URJC
ISSN 1988-8074
Departamento de Lenguajes y Sistemas Informáticos I
Universidad Rey Juan Carlos

Índice

1. Introduction……………………………………………………….. 1
2. Symbol Table Visualization with the Tool …………..………….. 2
2.1. Static visualization …………………………..………………………………… 2
2.2. Symbol Table Animation …………………………...………………………… 4
3. Educational evaluation …………………….…………………….. 6
3.1. First evaluation …………………………………….......……………………… 6
3.2. Second evaluation ……………………………………............……………...… 6
4. Conclusions ……………………………………………………….. 9
5. Acknowledgments ………………………………………….…….. 9
Apendix: Knowledge Pre-test/Post-test………………………….... 10
Apendix: Coding exercises.................…………………...……….... 12
References ……………………………………...…………………... 13

A second evaluation of SOTA?

Jaime Urquiza-Fuentes and Francisco Manso

LITE - Laboratory of Information Technologies in Education
Rey Juan Carlos University, Madrid, Spain

jaime.urquiza@urjc.es, f.manso@alumnos.urjc.es

Abstract. This report presents the evaluation of an educational tool
focused on the visualization of the symbol table in the context of a com-
piler course. In a first evaluation we used simulation exercises and tested
basic concepts of symbol tables. We detected efficiency improvements,
students who used the tool completed the exercises with the same grad-
ing and significantly faster than the students who did not use the tool. In
addition students’ opinion was positive. In a second evaluation we used
more active tasks, and tested students’ skills on writing parser specifica-
tions regarding symbol table management. We have detected significant
improvements. Students who used the tool outperformed those who did
not use the tool in a 22%.

Keywords: Evaluation, compiler visualization, symbol table

1 Introduction

Visualization has been widely used in computer science education. There are
various surveys on using visualization as an aid for computer science education,
e.g. [5]. At present there are tools which visualize program execution [10] or
algorithms and data structures [2, 16].

There are also tools aimed at visualizing the relevant processes in compil-
ers and language processors. It is a very common practice to divide a compiler
construction course in two different parts. One of them involves the lexical and
syntactical analysis of source code based on the formal languages theory tech-
niques. Here many tools can be found in the literature as JFlap [13, 14] focused
on authomata theory and formal languages, and VAST [1], CUPV [6], APA1

[7] or GYacc [9] focused on parsing algorithms. The other part includes pro-
cesses like syntax directed translation, with tools like as JACCIE[8], Lisa [11]
or VCOCO [12], code generation and execution with tools like the PIPPIN Ma-
chine [3] and symbol table use or type checking for which we have not found any
visualization tool aimed at education.
? This is the extended version of a paper presented at the ITiCSE 2011 Conference

titled “Improving Compilers Education through Symbol Tables Animations”
1 this tool has not name, APA is the title acronym of the paper where it is described

We have developed SOTA2 [4] (SymbOl Table Animation), an educational
tool aimed at visualizing, from a high level point of view, the working of a symbol
table during the source code analysis. This paper reports on an experience about
enhancing compilers teaching using the visualizations produced by this tool.

The rest of the paper is structured as follows. In the next section we describe
the tool. In the section three we detail the experience used to evaluate the
educational impact of the tool and its results. Finally, in the fourth section we
address our conclusions and some future work.

2 Symbol Table Visualization with the Tool

In this section we describe our static and dynamic graphical representations
of the symbol table concepts and the tool used to produce them. The main
objective is to visualize the actual state of the symbol table, and the operations
performed on it during the source code analysis. The tool has been designed for
both, classroom and self study sessions.

The interface of the tool, see Fig. 1, is divided into three areas: the program
area, the current state area and the messages area. The program area, on the
left side of the interface, shows the source code of the program being analyzed.
Currently, we work with a modification of the Pascal language called SimplePas-
cal, its description is shown in the help of the tool. The current state area, on
the upper right zone of the interface, shows the graphical representation of the
current state of the symbol table, and the last operations (identifier insertion,
scope creation and successful or failed searches) performed on it. Finally, the
messages area, at the bottom right zone of the interface, shows brief textual de-
scriptions of all the operations performed on the symbol table until the current
state has been reached.

The students can edit their own programs or use a set of predefined demon-
stration programs –with a name and a textual description– available via web.
Teachers can contribute to these demonstrations with their own programs. Next
we describe how the symbol table concepts are visualized, from both points of
view static and dynamic.

2.1 Static visualization

When the symbol table structure is made up of different scopes, the most suitable
visualization is the tree structure. In this tree, the nodes represent the scopes,
and the arcs define the parent-children scope relations. The tree will grow to
the right for new procedures and functions, and to the bottom for anonymous
scopes. Fig. 2 shows a source code and its corresponding structure: the root
scope with three children scopes corresponding to subprograms –Fact, Add and
Proc–, and finally an anonymous scope in the subprogram Proc.

In addition to the structure of the symbol table, the tool highlights the last
operations performed on the symbol table. On the one hand, there are operations
2 http://www.escet.urjc.es/∼jurquiza/research-iticse.html#sota

Fig. 1. Graphical user interface of the tool

Fig. 2. Source code and the corresponding tree structure of the symbol table

that modify the symbol table structure, thus the last scope created and the last
identifier inserted are highlighted. In Fig. 3, the last scope created corresponds
to the procedure “Proc”, and the last identifier inserted, corresponds to the
variable “b3”.

Fig. 3. The last scope created and the last identifier inserted are highlighted in blue
color.

On the other hand, search operations and their results are highlighted: the
current search scope, and the failed and successful search operations in the
scopes. The scope where the compiler is searching the item is highlighted in
red. If the search fails, the failed scope is marked with a diagonal line in red. If
the search successes, the found item is highlighted in green. The following three
figures show the three possibilities. In Fig. 4 the compiler is searching within the
anonymous scope. In Fig. 5 a failed search in the anonymous scope is shown, but
the search operation continues in the parent scope. Finally, in Fig. 6 is visualized
a successful search, finishing in the root environment.

Fig. 4. Entry search in an anonymous environment

2.2 Symbol Table Animation

Animating the symbol table structure consists in a sequence of steps. Each step
in the animation corresponds to an action performed on the symbol table during
the program compilation. In the case of search operations, each step is mapped
to the search operations performed on the different scopes during the search
process. The process begin at the current scope and ends when the searched

Fig. 5. Failed search in the anonymous scope, the new search scope is the parent scope

Fig. 6. A successful search in the root scope

item is found, or the root scope is reached. Animations can be controlled with
typical VCR controls: begin, end, pause, play and speed selection. In addition,
the tool allows to select the immediately previous or next animation step with the
buttons “previous step” and “next step”, or a concrete execution state, selected
with the time bar.

To allow the user to have always accessible information about the performed
actions at the moment, the tool provides a messages area. This area shows a
message for each operation performed on the symbol table and its result: new
scope creation, item insertion and search operations. In addition, the students
can choose the kind of messages visible through a filter utility for the messages.

When a message is selected, the corresponding –the moment in which the
action was performed– location in the source code is highlighted in yellow. E.g.
in Fig. 7 it can be seen how when selecting a successful search message, the
corresponding token in the source code is highlighted.

Fig. 7. Highlighting the token in the source code related to the messages

3 Educational evaluation

Visualizations can help students to understand concepts studied, but an evalu-
ation is needed to know their actual educational impact. Next we describe the
two evaluations performed with this tool.

3.1 First evaluation

This evaluation [15] was conducted as a controlled experiment with pre-post-
test measurements. It was divided in two sessions, a theoretical session where
concepts of the symbol table were explained and an exercises/laboratory session.
The task performed by the treatment group consisted in mentally simulating how
the symbol table structure would be built for a given source code, and assessing
it with the tool.

We tested the effectiveness, efficiency and user’s opinion about the tool. The
effectiveness was measured with a knowledge test where, given a source code,
the students had to draw the corresponding symbol table structure and answer
questions about scopes and visibility errors. The efficiency was measured in
terms of the time used to solve exercises during the exercises/laboratory session
and to answer the knowledge test. Finally, students’ opinion was collected with a
questionnaire regarding ease of use, technical quality, usefulness and the support
to the symbol table concepts.

The results of the experiment showed that there was no effectiveness improve-
ment. But the treatment group performed significantly faster than the control
group in completing the exercises (63,7%) and the test (32%), so there is effi-
ciency improvement. Finally, the questionnaire about the tool showed that the
students considered that the tool was easy to use, that its technical features
had good quality, that its visualization features were very useful, and that the
representation of the symbol table concepts was helpful. This acceptance of the
tool by the students was also supported by actual use of the tool, 75% of the
students used the tool to prepare the exam of the subject.

3.2 Second Evaluation

We have performed two changes with respect to the previous evaluation. On the
one hand, the difference between student’s opinion and pedagogical effectiveness
of the previous evaluation leaded us to question the design of the knowledge
tests. In the previous evaluation we focused on how the symbol table works,
some of these concepts are close to visibility and scope, both seen in most of
structured programming courses. In this evaluation we add an exercise about
the parser specification dedicated to the symbol table management.

On the other hand, following the Hundhausen et al’s [5] conclusions, we focus
the tasks on what students do with the tool, rather than what the tool shows to
students.

Subjects 57 students enrolled in the evaluation, the participation was voluntary.
We divided participants in two groups, the control group (n=34, called CG) and
the treatment group (n=23, called TG). Groups formation were independent
from the experiment. Students in the CG followed a typical methodology in
symbol table teaching, while TG followed a methodology adapted with the tool.

Variables of the evaluation We have used one independent variable, the use
of the tool, and one dependent variable, pedagogical effectiveness. The measure-
ment instrument is a knowledge test with questions regarding: the construction
process of structure of the symbol table –given a source code the student has to
draw the symbol table structure and answer questions about scopes, identifiers
and errors, e.g. how many scopes (named and anonymous) have been created
during the compiling process? – and the parser specification that builds the
symbol table during compilation –given a grammar and the API specification
for building the symbol table structure, the student has to insert semantic ac-
tions into the grammar using the API to produce the parser specification that
builds the symbol table structure.

Tasks and protocol The protocol was divided in four steps, and lasted three
weeks, see Fig. 8. At the beginning of the first week all the participants completed
the pretest. During the second week each group attended to the theoretical (2
hours long) and lab (1 hours long) sessions. During the third week, again all the
participants completed the post test.

Fig. 8. Protocol of the second evaluation

The CG followed a typical teaching methodology without animations. The
theoretical session consisted of teacher’s explanations, examples and simple exer-

cises. The tasks proposed in the exercises session were simulation exercises about
the construction of the structure of the symbol table of given source codes. Stu-
dents completed up to four exercises in this session.

The TG followed a teaching methodology adapted to the use of the ani-
mations generated by the tool. The theoretical session consisted of teacher’s
explanations, examples and simple exercises supported by the tool. The tasks
proposed in the lab session were two kinds of exercises: simulation and coding.
First, the teacher gives a source code to the students. While they mentally simu-
late the construction process of the corresponding symbol table they use the tool
to assess themselves. The second kind of exercise, coding, ask students to reverse
their mental process. The teacher provides a schema of a symbol table structure.
This schema specifies child and anonymous scopes, and visibility errors. Fig. 9
shows an example of a coding exercise. The students have to write the source
code that produces such structure. Again they can use the tool to assess their
solution. Students of the TG completed one simulation exercise and up to eight
coding exercises.

Fig. 9. An example of coding exercise of the second evaluation

Results We have studied students’ scores in the post-test. Considering all
the questions, we did not find post-test significant differences between both
groups. Then we studied both kinds of questions separately. Regarding the
construction process of the symbol table structure, we did not find post-test
significant differences. But we found significant differences in the question re-
garding the parser specification (t(39.84) = −2.8348, p < .01). Learning im-
provements of the CG were .1578, while those of the TG were .3817. Since the
pre-test scores of both groups in this question were not significantly different
(t(50.588) = −1.8581, p > .05), TG outperformed CG in more than 22% regard-
ing parser specification for symbol table structure building.

4 Conclusions

We have evaluated the use of symbol table animations in a compiler course.
Animations are generated with a specialized software visualization tool, this
tool has been designed to help in teaching and learning concepts of the symbol
table. In the first evaluation we did not detected effectiveness improvements, but
students who used the tool were faster completing exercises and knowledge test,
and had a positive opinion about the tool: they believe that the tool helps in
classroom and self-study and actually use the tool to prepare the exam.

In the second evaluation we used more active tasks and tested how students
designed parser specifications for symbol table management. The tool allowed
us to practice coding exercises. Although they could be solved without the tool,
actually the amount of exercises would be drastically low, taking into account:
the time used by students to think about the problem, write the solution (pen and
paper) and the time used by the teacher assessing the different solutions proposed
by the students. The students who used the tool produced significantly better
parser specifications, they outperformed the students who followed a typical
teaching methodology in a 22%.

Note that writing parser specifications is one of the most important objectives
of a compiler course. With the tool we have improved students’ skills on writing
these specifications regarding the symbol table management.

We have designed effective symbol table visualizations and their effective
educational use. Our future work consists in the development of an API that
generates these visualizations. Thus students can visualize the symbol table man-
agement in their own parser specifications.

5 Acknowledgments

This work was supported by project TIN2008-04103/TSI of the Spanish Ministry
of Science and Innovation. Also, the authors thank to the former members of the
research team, Micael Gallego and Francisco Gortázar, for the time and effort
that they dedicated to this project.

A Knowledge Pre-test/Post-test

1. Given the following program written in SimplePASCAL:

1: PROGRAM TEST1;

2: VAR

3: var1, var2: INTEGER;

4: var3 : INTEGER;

5: PROCEDURE procedimiento1(arg1:INTEGER);

6: VAR

7: auxiliar1, auxiliar2:INTEGER;

8: BEGIN

9: auxiliar2:= 34*arg1;

10: IF arg1<2 THEN auxiliar1:=1

11: ELSE

12: BEGIN

13: auxiliar1:= 2;

14: auxiliar2:= auxiliar2+5;

15: END;

16: VAR

17: auxiliar1:INTEGER;

18: BEGIN

19: auxiliar2 := auxiliar1 * 3;

20: END;

21: auxiliar1 := auxiliar1 + auxiliar2 * arg1;

22: END;

23: FUNCTION funcion(arg1: INTEGER; arg2: INTEGER; arg3: INTEGER):INTEGER;

24: VAR

25: auxiliar1 : INTEGER;

26: PROCEDURE proc1(arg1: INTEGER; arg2: INTEGER);

27: BEGIN

28: arg1 := 1;

29: arg2 := 3;

30: auxiliar1 := arg1 + arg2 * auxiliar2;

31: procedimiento1(auxiliar1);

32: END;

33: BEGIN

34: auxiliar1 := arg1 * arg2;

35: proc1(auxiliar1,arg3);

36: funcion := auxiliar1;

37: END;

38: BEGIN

39: var1 := 1;

40: var2 := auxiliar2;

41: var3 := proc1(var1+var2);

42: var1 := funcion(var2+var3);

43: procedimiento1(var1+var2-var3);

44: END.

Answer the follwing questions:

(a) How many scopes, where any entry has been inserted, have been created
during the analysis once the 19th line has been completely processed:

a) 7 b) 5 c) 3 d) 1
(b) How many scopes, where any entry has been inserted, have been created

during the analysis once the 40th line has been completely processed:

a) 7 b) 5 c) 3 d) 1
(c) How many entries will exist once the 35th line has been completely pro-

cessed:

a) 13 b) 15 c) 17 d) 19
(d) How many symbol table access errors have been detected during the

analysis of the program:

a) 0 b) 1 c) 2 d) 3
(e) If any error has been detected, detail: line number, identifier associated

and the operation associated –insertion or search.
2. Given the following grammar which describes a language similar to Sim-

plePascal :

programa ::= <PROGRAM> <ID> ";" bloque "."
bloque ::= declaracionL <BEGIN> resto <END>
bloqueEjecutable ::= defVarL <BEGIN> resto <END>
resto ::= bloqueEjecutable resto | lambda

declaracionL ::= declaracion declaracionL | lambda
declaracion ::= defVar | defProcedimiento | defFuncion

defVar ::= <VAR> listaVarL | lambda
defProcedimiento ::= <PROCEDURE> <ID> parFormales ";" bloque ";"
defFuncion ::= <FUNCTION> tipo ":" <ID> parFormales ";" bloque ";"

parFormales ::= "(" listaParamL ")" | lambda
listaParamL ::= listaParam ";" listaParamL | listaParam
listaParam ::= tipo ":" <ID> lid
lid ::= "," <ID> lid | lambda
listaVarL ::= listaVar ";" listaVarL | listaVar ";"
listaVar ::= tipo ":" <ID> lid

tipo ::= <INTEGER> | <REAL> | <BOOL>

It is asked to produce a traslator that generates the structure of the symbol
table of a given program. Next the usable API is described:
InsertID(class , lexem , type) : Inserts an identifier into the currently

active scope. The possible values of class are: proc, fun, param, vble.
Lexem is the name. The possible values of type are: int, real, bool. Some
examples are:

InsertID(proc , proc1 ,) : Inserts the entry corresponding to a pro-
cedure called “proc1”. Note that no value is given to the type argu-
ment.

InsertID(fun , func1 , real) : Inserts the entry corresponding to a
function called “func1” that returns a real value.

InsertID(param , arg1 , int) : Inserts the entry corresponding to
a formal parameter called “arg1” of integer type. The paramenters
will be inserted in the scope associated to the function or procedure
that they belong to.

InsertID(vble , media , bool) : Inserts the entry corresponding to
a variable called “media” of boolean type.

NewScope(name) : Creates a new scope associated to the entry of the
identifier passed as the argument name, and also it activates the scope
created. Note that the identifier entry must be previously created, except
for the root scope whose identifier does not need to be created.

ExitScope() : Exits from the active scope and activates the parent scope.

B Coding exercises

Next, eight exercises are given to work with the SOTA tool. The main task is
write a program in SimplePascal that generates a symbol table whose structure
follows the scheme given in the images. Blue rectangles represent to named
scopes, while green rectangles represent to anonious scopes. Finally, red stars
indicate symbol table errors to be detected.

Exercise 1 Exercise 2

Exercise 3 Exercise 4

Exercise 5

Exercise 6

Exercise 7

Exercise 8

References

1. F. Almeida-Martnez, J. Urquiza-Fuentes, and J. Velzquez-Iturbide. Visualization
of syntax trees for language processing courses. Journal of Universal Computer
Science, 15(7):1546–1561, 2009.

2. T. Chen and T. Sobh. A tool for data structure visualization and user-defined
algorithm animation. In Frontiers in Education Conference, 2001. 31st Annual,
volume 1, pages TID –2–7 vol.1, Los Alamitos, CA, USA, 2001. IEEE Computer
Society Press.

3. R. Decker and S. Hirshfield. The pippin machine: simulations of language process-
ing. J. Educ. Resour. Comput., 1:4–17, December 2001.

4. M. Gallego-Carrillo, F. Gortázar-Bellas, J. Urquiza-Fuentes, and J. A. Velázquez-
Iturbide. Sota: a visualization tool for symbol tables. SIGCSE Bull., 37:385–385,
June 2005.

5. C. Hundhausen, S. Douglas, and J. Stasko. A meta-study of algorithm visualization
effectiveness. J. Visual Lang. Comput., 13(3):259–290, 2002.

6. A. Kaplan and D. Shoup. Cupv – a visualization tool for generated parsers.
SIGCSE Bull., 32:11–15, March 2000.

7. S. Khuri and Y. Sugono. Animating parsing algorithms. SIGCSE Bull., 30:232–236,
March 1998.

8. N. Krebs and L. Schmitz. Visual syntax tools.
http://www2.cs.unibw.de/Tools/Syntax/english
/index.hmtl, 2004.

9. M. E. Lovato and M. F. Kleyn. Parser visualizations for developing grammars with
yacc. SIGCSE Bull., 27:345–349, March 1995.

10. A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari. Visualizing programs with
jeliot 3. In AVI ’04: Proceedings of the working Conference on Advanced Visual
Interfaces, pages 373–376, New York, NY, USA, 2004. ACM Press.

11. M. Mwernik and V. Zumer. An educational tool for teaching compiler construction.
IEEE Transactions on Education, 46, 2003.

12. R. D. Resler and D. M. Deaver. Vcoco: a visualisation tool for teaching compilers.
In Proceedings of the 6th annual conference on the teaching of computing and the
3rd annual conference on Integrating Technology into Computer Science Education:
Changing the delivery of computer science education, ITiCSE ’98, pages 199–202,
New York, NY, USA, 1998. ACM.

13. S. Rodger and T. Finley. JFLAP - An Interactive Formal Languages and Automata
Package. Jones and Bartlett, Sudbury, MA, USA, 2006.

14. S. H. Rodger, E. Wiebe, K. M. Lee, C. Morgan, K. Omar, and J. Su. Increasing
engagement in automata theory with jflap. SIGCSE Bull., 41:403–407, March 2009.

15. J. Urquiza-Fuentes, J. Velázquez-Iturbide, M. Gallego-Carrillo, and F. Gortázar-
Bellas. An evaluation of a symbol table visualization tool. In Proc. of 8th In-
ternational Symposium on Computers in Education (SIIE 2006), pages 198–205,
2006.

16. J. Velázquez-Iturbide, C. Pareja-Flores, and J. Urquiza-Fuentes. An approach
to effortless construction of program animations. Comput. Educ., 50(1):179–192,
2008.

